首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon are prepared by applying nanoscale Kirkendall diffusion to the electrospinning process. Amorphous carbon nanofibers embedded with CoFe2@onion‐like carbon nanospheres are prepared by reduction of the electrospun nanofibers. Oxidation of the CoFe2‐C nanofibers at 300 °C under a normal atmosphere produces porous nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon. CoFe2 nanocrystals are transformed into the hollow CoFe2O4 nanospheres during oxidation through a well‐known nanoscale Kirkendall diffusion process. The discharge capacities of the carbon‐free CoFe2O4 nanofibers composed of hollow nanospheres and the nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon are 340 and 930 mA h g?1, respectively, for the 1000th cycle at a current density of 1 A g?1. The nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon exhibit an excellent rate performance even in the absence of conductive materials.  相似文献   

2.
Magnetic composite nanospheres (MCS) were first prepared via mini‐emulsion polymerization. Subsequently, the hybrid core–shell nanospheres were used as carriers to support gold nanoparticles. The as‐prepared gold‐loading magnetic composite nanospheres (Au‐MCS) had a hydrophobic core embed with γ‐Fe3O4 and a hydrophilic shell loaded by gold nanoparticles. Both the content of γ‐Fe3O4 and the size of gold nanoparticles could be controlled in our experiments, which resulted in fabricating various materials. On one hand, the Au‐MCS could be used as a T2 contrast agent with a relaxivity coefficient of 362 mg?1 ml S?1 for magnetic resonance imaging. On the other hand, the Au‐MCS exhibited tunable optical‐absorption property over a wavelength range from 530 nm to 800 nm, which attributed to a secondary growth of gold nanoparticles. In addition, dynamic light scattering results of particle sizing and Zeta potential measurements revealed that Au‐MCS had a good stability in an aqueous solution, which would be helpful for further applications. Finally, it showed that the Au‐MCS were efficient catalysts for reductions of hydrophobic nitrobenzene and hydrophilic 4‐nitrophenol that could be reused by a magnetic separation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres‐doped three‐dimensional (3D) graphene aerogel has been fabricated by a one‐pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5–10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate‐like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long‐term stability of 634 mA h g?1 over 1000 cycles at a high current density of 6 A g?1 (7 C), and an excellent rate capability of 413 mA h g?1 at 10 A g?1 (11 C), thus exhibiting great potential as an anode composite structure for durable high‐rate lithium‐ion batteries.  相似文献   

4.
Nanostructured carbon-based materials, such as carbon nanotube arrays have shown respectable removal ability for heavy metal ions and organic dyes in aqueous solution. Although the carbon-based materials exhibited excellent removal ability, the separation of them from the aqueous solution is difficult and time-consuming. Here we demonstrated a novel and facile route for the large-scale fabrication of Fe3O4@C hollow nanospheres, with using ferrocene as a single reagent and SiO2 as a template. The as-prepared Fe3O4@C hollow nanospheres exhibited adsorption ability for heavy metal ions and organic dyes from aqueous solution, and can be easily separated by an external magnet. When the as-prepared Fe3O4@C hollow nanospheres were mixed with the aqueous solution of Hg2+ within 15 min, the removal efficiency was 90.3%. The as-prepared Fe3O4@C hollow nanospheres were also exhibited a high adsorption capacity (100%) as the adsorbent for methylene blue (MB). In addition, the as-prepared Fe3O4@C hollow nanospheres can be used as the recyclable sorbent for water treatment via a simple magnetic separation.  相似文献   

5.
SiO2 nanospheres coated with silica chemically doped with a ruthenium complex [Ru(Bphen)2Phen? Si]Cl2 (denoted as Ru, there Bphen = 4,7‐diphenyl‐1,10‐phenanthrolin, Phen? Si = modified 1,10‐phenathroline) were prepared using a simple solution‐based method. Field‐emission scanning electron microscopy (FE‐SEM) showed that the pure SiO2 nanospheres with a mean diameter of ~185 nm were successfully coated with Ru complex–chemically doped SiO2 shell with a thickness of ~45 nm. The obtained core‐shell nanosphere materials exhibited bright red triplet metal‐to‐ligand charge transfer (3MLCT) emission, and their photoluminescent intensity was sensitive to oxygen concentration. These properties make them promising candidates for biomarkers and optical oxygen sensors, which can measure the O2 concentration in biological fluids. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The core–shell structure Fe3O4/SiO2 magnetic microspheres were prepared by a sol–gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu2+, Ni2+ and Zn2+, were chelated on the Fe3O4@SiO2–IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni2+‐chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3O4@SiO2–IDA–Ni2+ magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His‐tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
<正>众所周知,纳米材料的尺寸大小、晶型、形貌构型等结构特征对材料的化学物理性能有重要的影响[1],由于特殊形貌的新材料所具有独特、新颖、高效的化学物理等方面的性质以及在众多领域中的潜在应用[2],特别是3D花状空心纳米结构新物质[3-4],新形貌物质的纳米材料的制备方法和应用特性已经吸引了世界上材料领域的广泛兴趣和关注[5]。目前为止,合成3D纳米结构的方法有自组装法、三维导向连接法以及水热法等,即通过使用有  相似文献   

8.
Robust nitrogen‐enriched Fe3O4@carbon nanospheres have been fabricated as a catalyst scaffold for Pt nanoparticles. In this work, core–shell Fe3O4@3‐aminophenol/formaldehyde (APF) nanocomposites were first synthesized by a simple hydrothermal method, and subsequently carbonized to Fe3O4@N‐Carbon nanospheres for in situ growth of Pt nanocrystals. Abundant amine groups were distributed uniformly onto Fe3O4@N‐Carbon nanospheres, which not only improved the dispersity and stability of the Pt nanocrystals, but also endowed the Pt‐based catalysts with good compatibility in organic solvents. The dense three‐dimensional cross‐linked carbon shell protects the Fe3O4 cores against damage from harsh chemical environments, even in aqueous HCl (up to 1.0 m ) or NaOH (up to 1.0 m ) solutions under ultrasonication for 24 hours, which indicates that it can be used as a robust catalyst scaffold. In the reduction of nitrobenzene compounds, the Fe3O4@N‐Carbon@Pt nanocatalysts show outstanding catalytic activity, stability, and recoverability.  相似文献   

9.
Heteroatom‐doped polymers or carbon nanospheres have attracted broad research interest. However, rational synthesis of these nanospheres with controllable properties is still a great challenge. Herein, we develop a template‐free approach to construct cross‐linked polyphosphazene nanospheres with tunable hollow structures. As comonomers, hexachlorocyclotriphosphazene provides N and P atoms, tannic acid can coordinate with metal ions, and the replaceable third comonomer can endow the materials with various properties. After carbonization, N/P‐doped mesoporous carbon nanospheres were obtained with small particle size (≈50 nm) and high surface area (411.60 m2 g?1). Structural characterization confirmed uniform dispersion of the single atom transition metal sites (i.e., Co‐N2P2) with N and P dual coordination. Electrochemical measurements and theoretical simulations revealed the oxygen reduction reaction performance. This work provides a solution for fabricating diverse heteroatom‐containing polymer nanospheres and their derived single metal atom doped carbon catalysts.  相似文献   

10.
Functional polymer‐grafting silica nanoparticles hold great promise in diverse applications such as molecule recognition, drug delivery, and heterogeneous catalysis due to high density and uniform distribution of functional groups and their tunable spatial distance. However, conventional grafting methods from monomers mainly consist of one or more extra surface modification steps and a subsequent surface polymerization step. A monomer protonation‐dependent surface polymerization strategy is proposed to achieve one‐step uniform surface grafting of cross‐linked poly(4‐vinylpyridine) (P4VP) onto core–shell Fe3O4@SiO2 nanostructures. At an approximate pH, partially protonated 4VP sites in aqueous solution can be strongly adsorbed onto deprotonated silanol groups ( Si O) onto Fe3O4@SiO2 nanospheres to ensure prior polymerization of these protonated 4VP sites exclusively onto Fe3O4@SiO2 nanoparticles and subsequent polymerization of other 4VP and divinylbenzene monomers harvested by these protonated 4VP monomers onto Fe3O4@SiO2 nanoparticles, thereby achieving direct grafting of cross‐linked P4VP macromolecules onto Fe3O4@SiO2 nanoparticles.  相似文献   

11.
A facile method for the fabrication of well‐dispersed mesoporous Pt nanospheres involves the use of a polymeric micelle assembly. A core–shell–corona type triblock copolymer [poly(styrene‐b‐2‐vinylpyridine‐b‐ethylene oxide), PS‐b‐P2VP‐b‐PEO] is employed as the pore‐directing agent. Negatively charged PtCl42? ions preferably interact with the protonated P2VP+ blocks while the free PEO chains prevent the aggregation of the Pt nanospheres. The size of the mesopores can be finely tuned by varying the length of the PS chain. Furthermore, it is demonstrated that the metallic mesoporous nanospheres thus obtained are promising candidates for applications in electrochemistry.  相似文献   

12.
Graphitic carbon nitride (g‐C3N4)‐based photocatalysts have received considerable attention in the field of photocatalysis, especially for photocatalytic H2 evolution. However, the intrinsic disadvantages of g‐C3N4 seriously limit its practical application. Herein, CdS nanospheres with an average diameter of 135 nm prepared using a solvothermal method were used as co‐catalysts to form CdS/g‐C3N4 composites (CSCN) to enhance the photocatalytic activity. Various techniques were employed to characterize the structure, composition and optical properties of the as‐prepared samples. It was found that the CdS nanospheres were relatively uniformly dispersed on the surface of g‐C3N4. Moreover, the photocatalytic H2 generation activity of the samples was evaluated using lactic acid as sacrificial reagent in water under visible light irradiation. When the amount of CdS nanospheres loaded in the hybridized composites was 5 wt%, the optimal H2 evolution rate reached 924 μmol g?1 h?1, which was approximately 1.4 times higher than that (680 μmol g?1 h?1) of Pt/g‐C3N4 (3 wt%). Based on the results of analysis, a possible mechanism for the photocatalytic activity of CSCN is proposed tentatively.  相似文献   

13.
Isoniazid‐filled Fe2O3 hollow nanospheres (INH@Fe2O3, diameter <30 nm, 48 wt % INH‐load) are prepared for the first time and suggested for tuberculosis therapy. After dextran‐functionalization, the INH@Fe2O3@DEX nanocontainers show strong activity against Mycobacterium tuberculosis (M.tb.) and M.tb.‐infected macrophages. The nanocontainers can be considered as “Trojan horses” and show efficient, active uptake into both M.tb.‐infected macrophages and even into mycobacterial cells.  相似文献   

14.
A facile and low‐cost strategy is developed to prepare three‐dimensional (3D) macroporous NiCo2O4 sheets, which can be used as a highly efficient non‐noble metal electrocatalyst for the oxygen reduction reaction (ORR) in alkaline conditions. The as‐obtained sheets have a thickness of about 150 nm and feature a typical 3D macroporous structure with pore volumes of up to 0.23 cm3 g?1, which could decrease the mass transport resistance and allow easier access of the reactants to the active surface sites. The as‐prepared macroporous NiCo2O4 sheets exhibit high electrocatalytic activity for ORR with a four‐electron pathway, good long‐term stability and high tolerance against methanol. The unique 3D macroporous structure and intrinsic properties may be responsible for their high performance.  相似文献   

15.
This work focussed on the optical, magnetic and photocatalytic properties of sol–gel-synthesized Fe3O4-doped ZnO nanospheres and was compared with pristine ZnO nanospheres. The crystalline phase of Fe3O4-doped ZnO nanospheres was studied with X-ray diffraction analysis and was well matched with standard pattern. Surface morphology was studied with HR-SEM images and EDAX spectrum. Furthermore, elemental mapping analysis was carried out to confirm the presence of Fe3O4 phase in Fe3O4-doped ZnO nanospheres. FT-Raman spectral studies show that a strong intense peak at 670 cm?1 indicates the presence of Fe3O4 in Fe3O4-doped ZnO nanospheres. The mean crystallite size of Fe3O4-doped ZnO nanospheres was 34 nm as calculated by Debye–Scherrer’s formula which confirmed with HR-TEM image. The SAED pattern shows the presence of (100), (101), (102) and (202) of ZnO phase and (400) of Fe3O4 phase, confirming the crystalline nature of Fe3O4-doped ZnO nanospheres. The vibrating sample magnetometer (VSM) result shows that Fe3O4-doped ZnO nanospheres possess superparamagnetic nature and the composite nanospheres are magnetically separable. The optical properties have been studied by diffuse reflectance spectroscopy and time-resolved photoluminescence spectra. Implantation of Fe3O4 in ZnO nanospheres modifies the UV absorption edge, and it displays near-band gap emission and deep-level emission. The photocatalytic activity of Fe3O4-doped ZnO nanospheres studied against rhodamine B dye is found higher than that of pristine ZnO nanospheres which shows that Fe3O4-doped ZnO nanospheres are a promising photocatalyst.  相似文献   

16.
3D‐MoS2 can adsorb organic molecules and provide multidimensional electron transport pathways, implying a potential application for environment remediation. Here, we study the degradation of aromatic organics in advanced oxidation processes (AOPs) by a 3D‐MoS2 sponge loaded with MoS2 nanospheres and graphene oxide (GO). Exposed Mo4+ active sites on 3D‐MoS2 can significantly improve the concentration and stability of Fe2+ in AOPs and keep the Fe3+/Fe2+ in a stable dynamic cycle, thus effectively promoting the activation of H2O2/peroxymonosulfate (PMS). The degradation rate of organic pollutants in the 3D‐MoS2 system is about 50 times higher than without cocatalyst. After a 140 L pilot‐scale experiment, it still maintains high efficiency and stable AOPs activity. After 16 days of continuous reaction, the 3D‐MoS2 achieves a degradation rate of 120 mg L?1 antibiotic wastewater up to 97.87 %. The operating cost of treating a ton of wastewater is only US$ 0.33, suggesting huge industrial applications.  相似文献   

17.
Qi Gang  Liu Wei  Bei Zhining 《中国化学》2011,29(1):131-134
An efficient route for the synthesis of 5‐substituted 1H‐tetrazole via [2+3] cycloaddition of nitriles and sodium azide is reported using Fe3O4/ZnS hollow nanospheres as a magnetic separable heterogeneous catalyst. The catalyst is very efficient, affording excellent yields and can be reused for several circles. In addition, the Fe3O4 inner shell exhibits magnetism, making the catalyst easily separated by a magnet.  相似文献   

18.
Highly uniform Mo–glycerate solid spheres are synthesized for the first time through a solvothermal process. The size of these Mo–glycerate spheres can be easily controlled in the range of 400–1000 nm by varying the water content in the mixed solvent. As a precursor, these Mo–glycerate solid spheres can be converted into hierarchical MoS2 hollow nanospheres through a subsequent sulfidation reaction. Owing to the unique ultrathin subunits and hollow interior, the as‐prepared MoS2 hollow nanospheres exhibit appealing performance as the anode material for lithium‐ion batteries. Impressively, these hierarchical structures deliver a high capacity of about 1100 mAh g?1 at 0.5 A g?1 with good rate retention and long cycle life.  相似文献   

19.
A facile route to synthesize amorphous TiO2 nanospheres by a controlled oxidation and hydrolysis process without any structure‐directing agents or templates is presented. The size of the amorphous TiO2 nanospheres can be easily turned from 20 to 1500 nm by adjusting either the Ti species or ethanol content in the reaction solution. The phase structure of nanospheres can be controlled by hydrothermal treatment. The TiO2 nanospheres show excellent size‐dependent light‐scattering effects and can be structured into a light‐harvesting layer for dye‐sensitized solar cells with a quite high power conversion efficiency of 9.25 %.  相似文献   

20.
采用“一锅法”制备了四氧化三铁/半胱氨酸(Fe3O4/Cys)磁性纳米微球,随后对Fe3O4/Cys进行亚氨基二乙酸(IDA)修饰得到Fe3O4/Cys/IDA磁性双功能化纳米微球。研究发现Fe3O4/Cys中的L-Cys是通过—SH基团接枝到Fe3O4表面的,随后IDA分子中的羧基与Fe3O4/Cys中的—NH2形成酰胺键,最终形成多支链多羧基的Fe3O4/Cys/IDA磁性纳米修复剂。基于修复剂表面短支链-长支链交替的多羧基结构,实现了羧基基团的高密度接枝。同时,Fe3O4/Cys/IDA磁性纳米微球对Pb2+、Cd2+、Cu2+、Co2+、Ni2+、Zn2+为专性吸附,而对Hg2+属于非专性吸附,且吸附重金属后得到的钝化产物均表现了良好的稳定性。另外,Fe3O4/Cys/IDA对重金属离子的吸附符合Langmuir模型,属于单层均相吸附,其吸附过程符合准二级动力学模型,最大吸附量为49.05 mg·g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号