首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The strong boron Lewis acid tris(pentafluorophenyl)borane, B(C6F5)3, is shown to abstract a hydride from suitably donor‐substituted cyclohexa‐1,4‐dienes, eventually releasing dihydrogen. This process is coupled with the FLP‐type (FLP=frustrated Lewis pair) hydrogenation of imines and nitrogen‐containing heteroarenes that are catalyzed by the same Lewis acid. The net reaction is a B(C6F5)3‐catalyzed, i.e., transition‐metal‐free, transfer hydrogenation using easy‐to‐access cyclohexa‐1,4‐dienes as reducing agents. Competing reaction pathways with or without the involvement of free dihydrogen are discussed.  相似文献   

2.
In recent years ‘frustrated Lewis pairs’ (FLPs) have been shown to be effective metal‐free catalysts for the hydrogenation of many unsaturated substrates. Even so, limited functional‐group tolerance restricts the range of solvents in which FLP‐mediated reactions can be performed, with all FLP‐mediated hydrogenations reported to date carried out in non‐donor hydrocarbon or chlorinated solvents. Herein we report that the bulky Lewis acids B(C6Cl5)x(C6F5)3?x (x=0–3) are capable of heterolytic H2 activation in the strong‐donor solvent THF, in the absence of any additional Lewis base. This allows metal‐free catalytic hydrogenations to be performed in donor solvent media under mild conditions; these systems are particularly effective for the hydrogenation of weakly basic substrates, including the first examples of metal‐free catalytic hydrogenation of furan heterocycles. The air‐stability of the most effective borane, B(C6Cl5)(C6F5)2, makes this a practically simple reaction method.  相似文献   

3.
NMR spectroscopy has revealed pH‐dependent structural changes in the highly conserved catalytic domain 5 of a bacterial group II intron. Two adenines with pKa values close to neutral pH were identified in the catalytic triad and the bulge. Protonation of the adenine opposite to the catalytic triad is stabilized within a G(syn)–AH+(anti) base pair. The pH‐dependent anti‐to‐syn flipping of this G in the catalytic triad modulates the known interaction with the linker region between domains 2 and 3 (J23) and simultaneously the binding of the catalytic Mg2+ ion to its backbone. Hence, this here identified shifted pKa value controls the conformational change between the two steps of splicing.  相似文献   

4.
D‐glucosamine Schiff base N‐(2‐deoxy‐β‐D‐glucopyranosyl‐2‐salicylaldimino) and its Cu(II) and Zn(II) complexes were synthesized and characterized. The hydrolysis of p‐nitrophenyl picolinate (PNPP) catalyzed by ligand and complexes was investigated kinetically by observing the rates of the release of p‐nitrophenol in the aqueous buffers at 25°C and different pHs. The scheme for reaction acting mode involving a ternary complex composed of ligand, metal ion, and substrate was established and the reaction mechanisms were discussed by metal–hydroxyl and Lewis acid mechanisms. The experimental results indicated that the complexes, especially the Cu(II) complex, efficiently catalyzed the hydrolysis of PNPP. The catalytic reactivity of the Zn(II) complex was much smaller than the Cu(II) complex. The rate constant kN showing the catalytic reactivity of the Cu(II) complex was determined to be 0.299 s?1 (at pH 8.02) in the buffer. The pKa of hydroxyl group of the ternary complex was determined to be 7.86 for the Cu(II) complex. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 345–350, 2002  相似文献   

5.
An efficient nickel‐catalyzed asymmetric hydrogenation of NtBu ‐ sulfonyl imines was developed with excellent yields and enantioselectivities using (R,R)‐QuinoxP* as a chiral ligand. The use of a much lower catalyst loading (0.0095 mol %, S/C=10500) represents the highest catalytic activity for the Ni‐catalyzed asymmetric hydrogenations reported so far. Mechanistic studies suggest that a coordination equilibrium exists between the nickel salt and its complex, and that excess nickel salt promotes the formation of the active Ni‐complex, and therefore improved the efficiency of the hydrogenation. The catalytic cycle was also investigated by calculations to determine the origin of the enantioselectivity. An extensive network of numerous weak attractive interactions was found to exist between the catalyst and substrate in the transition state and may also contribute to the high catalytic activity.  相似文献   

6.
The frustrated Lewis pair (FLP)‐catalyzed hydrogenation and deuteration of N‐benzylidene‐tert‐butylamine ( 2 ) was kinetically investigated by using the three boranes B(C6F5)3 ( 1 ), B(2,4,6‐F3‐C6H2)3 ( 4 ), and B(2,6‐F2‐C6H3)3 ( 5 ) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol?1) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect.  相似文献   

7.
The ionization (dissociation) constant (pKa) is one of the most important properties of a drug molecule. It is reported that almost 68% of ionized drugs are weak bases. To be able to predict accurately the pKa value(s) for a drug candidate is very important, especially in the early stages of drug discovery, as calculations are much cheaper than determining pKa values experimentally. In this study, we derive two linear fitting equations (pKa = a × ΔE + b; where a and b are constants and ΔE is the energy difference between the cationic and neutral forms, i.e., ΔE = Eneutral?Ecationic) for predicting pKas for organic bases in aqueous solution based on a training/test set of almost 500 compounds using our previously developed protocol (OLYP/6‐311+G**//3‐21G(d) with the the conductor‐like screening model solvation model, water as solvent; see Zhang, Baker, Pulay, J. Phys. Chem. A 2010 , 114, 432). One equation is for saturated bases such as aliphatic and cyclic amines, anilines, guanidines, imines, and amidines; the other is for unsaturated bases such as heterocyclic aromatic bases and their derivatives. The mean absolute deviations for saturated and unsaturated bases were 0.45 and 0.52 pKa units, respectively. Over 60% and 86% of the computed pKa values lie within ±0.5 and ±1.0 pKa units, respectively, of the corresponding experimental values. The results further demonstrate that our protocol is reliable and can accurately predict pKa values for organic bases. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The metal-free catalytic hydrogenation of secondary carboxylic acid amides is developed. The reduction is realized by two new catalytic reactions. First, the amide is converted into the imidoyl chloride by triphosgene (CO(OCCl3)2) using novel phosphorus(V) catalysts. Second, the in situ generated imidoyl chlorides are hydrogenated in high yields by an FLP-catalyst. Mechanistic and quantum mechanical calculations support an autoinduced catalytic cycle for the hydrogenation with chloride acting as unusual Lewis base for FLP-mediated H2-activation.  相似文献   

9.
Pseudo‐first‐order rate constants (kobs) for hydrolysis of a sulfonylurea herbicide, azimsulfuron, AZIM®, {N‐[[(4,6‐dimethoxy‐2‐pyrimidinyl)amino]carbony]‐1‐methyl‐4‐(2‐methyl‐2H‐tetrazol‐5‐yl)‐1H‐pyrazole‐5‐sulfonamide} (AZS) follow an empirical relationship: kobs1 + α2[OH] + α3[OH]2 within the [NaOH] range of 0.1–2.0 M at different temperatures ranging from 40 to 55°C. The contribution of α3[OH]2 term is small compared with α2[OH] term and this turns out to be zero at 60°C. Pseudo‐first‐order rate constants (kobs) for hydrolysis of AZS within the [H+] range from 2.5 × 10−6 to 1.4 M follow the relationship: kobs = (α1K a + B1[H+] + B2[H+]2)/([H+] + Ka) where pKa = 4.37 at 50°C. The value of B1 is nearly 25 times larger than that of α1. The rate of alkaline hydrolysis of AZIM is weakly sensitive to ionic strength. © 1999 John Wiley & Sons, Inc., Int J Chem Kinet 31: 253–260, 1999  相似文献   

10.
Second‐order rate constants for the reactions of 2‐aryl‐4,6‐dinitrobenzotriazole 1‐oxides 1a‐d with some 4‐X‐substituted phenoxide ions 2a‐d (X = OCH3, H, Cl, and CN) have been measured in aqueous solution at 20°C. The pKa values for the σ‐complexation processes of a series of benzotriazole 1a‐d measured in water have been used to determine their electrophilicity parameters E according to the correlation E = –3.20 – 0.662 pKa (F. Terrier, S. Lakhdar, T. Boubaker, and R. Goumont, J Org Chem, 2005 , 70, 6242–6253). For these reactions, plots of log k versus the electrophilicity parameters E of the benzotriazoles 1a‐d were linear, allowing to derive the nucleophilicity parameters N and s for phenoxide ions as defined by the Mayr equation log k1 (20°C) = s (E + N) (H. Mayr, M. Patz. Angew Chem, Int Ed Engl 1994 , 33, 938–957). The N values are found to cover a range of nucleophilicity from 6.85 to 10.22, going from 4‐cyanophenoxide 2d for the least reactive ion to 4‐methoxyphenoxide 2a for the most reactive nucleophile. Good linear correlations were found between the nucleophilicity parameters N of phenoxide ions 2a‐d and the pKa values of their conjugate acids (N = –3.05 + 1.25 pKa) and the constants of the substituents X (N = 9.21 – 2.51).  相似文献   

11.
A facile route toward the synthesis of isoquinolin‐3‐ones through a cooperative B(C6F5)3‐ and Cp*CoIII‐catalyzed C?H bond activation of imines with diazo compounds is presented. The inclusion of a catalytic amount of B(C6F5)3 results in a highly efficient reaction, thus enabling unstable NH imines to serve as substrates.  相似文献   

12.
The B(C6F5)3‐catalyzed hydrogenation is applied to aldoxime triisopropylsilyl ethers and hydrazones bearing an easily removable phthaloyl protective group. The C?N reduction of aldehyde‐derived substrates (oxime ethers and hydrazones) is enabled by using 1,4‐dioxane as the solvent known to participate as the Lewis‐basic component in FLP‐type heterolytic dihydrogen splitting. More basic ketone‐derived hydrazones act as Lewis bases themselves in the FLP‐type dihydrogen activation and are therefore successfully hydrogenated in nondonating toluene. The difference in reactivity between aldehyde‐ and ketone‐derived substrates is also reflected in the required catalyst loading and dihydrogen pressure.  相似文献   

13.
A new β‐cyclodextrin dimer, 2,6‐dimethylpyridine‐bridged‐bis(6‐monoammonio‐β‐cyclodextrin) (pyridyl BisCD, L), is synthesized. Its zinc complex (ZnL) is prepared, characterized, and applied as a catalyst for diester hydrolysis. The formation constant (log KML=7.31±0.04) of the complex and deprotonation constant (pKa1=8.14±0.03, pKa2=9.24±0.01) of the coordinated water molecule were determined by a potentiometric pH titration at (25±0.1)°C, indicating a tridentate N,N′,N′′‐zinc coordination. Hydrolysis kinetics of carboxylic acid esters were determined with bis(4‐nitrophenyl)carbonate (BNPC) and 4‐nitrophenyl acetate (NA) as the substrates. The resulting hydrolysis rate constants show that ZnL has a very high rate of catalysis for BNPC hydrolysis, yielding an 8.98×103‐fold rate enhancement over uncatalyzed hydrolysis at pH 7.00, compared to only a 71.76‐fold rate enhancement for NA hydrolysis. Hydrolysis kinetics of phosphate esters catalyzed by ZnL are also investigated using bis(4‐nitrophenyl)phosphate (BNPP) and disodium 4‐nitrophenyl phosphate (NPP) as the substrates. The initial first‐order rate constant of catalytic hydrolysis for BNPP was 1.29×10?7 s?1 at pH 8.5, 35 °C and 0.1 mM catalyst concentration, about 1600‐fold acceleration over uncatalyzed hydrolysis. The pH dependence of the BNPP cleavage in aqueous buffer was shown as a sigmoidal curve with an inflection point around pH 8.25, which is nearly identical to the pKa value of the catalyst from the potentiometric titration. The kBNPP of BNPP hydrolysis promoted by ZnL is found to be 1.68×10?3 M ?1 s?1, higher than that of NPP, and comparatively higher than those promoted by its other tridentate N,N′,N′′‐zinc analogues.  相似文献   

14.
The reactions of a series of anilines with phenyl 2,4‐dinitrophenyl ( 1 ), 4‐nitrophenyl 2,4‐dinitrophenyl ( 2 ), and bis(2,4‐dinitrophenyl) ( 3 ) carbonates are subjected to a kinetic investigation in 44 wt% ethanol–water, at 25.0 ± 0.1°C and an ionic strength of 0.2 M. Under amine excess pseudo‐first‐order rate coefficients (kobs) are obtained. Plots of kobs against free amine concentration at constant pH are linear, with slopes kN. The Brønsted plots (log kN vs. anilinium pKa) for the anilinolysis of 1 – 3 are linear, with slope (β) values of 0.52, 0.61, and 0.63, respectively. The values of these slopes and other considerations suggest that these reactions are ruled by a concerted mechanism. For these reactions, the kN values follow the reactivity sequence: 3 > 2 > 1 . Namely, the reactivity increases as the number of nitro groups attached to the nonleaving group increases. Comparison of the reactions of this work with the stepwise pyridinolysis of carbonates 1 – 3 indicates that the zwitterionic tetrahedral intermediate (T±) formed in the pyridinolysis reactions is destabilized by the change of its pyridino moiety by an isobasic anilino group. This is attributed to the superior leaving ability from the T± intermediate of anilines, relative to isobasic pyridines, which destabilize kinetically this intermediate. The kN values for the anilinolysis of carbonates 1 – 3 are similar to those found in the reactions of these carbonates with secondary alicyclic amines. With the kinetic data for the anilinolysis of the title substrates and 4‐methylphenyl and 4‐chlorophenyl 2,4‐dinitrophenyl carbonates, a multiparametric equation is derived for log kN as a function of the pKa of the conjugate acids of anilines and nonleaving groups. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 191–197, 2011  相似文献   

15.
The mechanism of a recently discovered intramolecular Heck‐type coupling of oximes with aryl halides (Angew. Chem. Int. Ed. 2007 , 46, 6325) was systematically studied by using density functional methods enhanced with a polarized continuum solvation model. The overall catalytic cycle of the reaction was found to consist of four steps: oxidative addition, migratory insertion, β‐H elimination, and catalyst regeneration, whereas an alternative base‐promoted C? H activation pathway was determined to be less favorable. Migratory insertion was found to be the rate determining step in the catalytic cycle. The apparent activation barrier of migratory insertion of the (E)‐oxime was +20.5 kcal mol?1, whereas the barrier of (Z)‐oxime was as high as +32.7 kcal mol?1. However, (Z)‐oxime could isomerize to form the more active (E)‐oxime with the assistance of K2CO3, so that both the (E)‐ and (Z)‐oxime substrates could be transformed to the desired product. Our calculations also indicated that the Z product was predominant in the equilibrium of the isomerization of the imine double bond, which constituted the reason for the good Z‐selectivity observed for the reaction. Furthermore, we examined the difference between the intermolecular Heck‐type reactions of imines and of olefins. It was found that in the intermolecular Heck‐type coupling of imines, the apparent activation barrier of migratory insertion was as high as +35 kcal mol?1, which should be the main obstacle of the reaction. The analysis also revealed the main problem for the intermolecular Heck‐type reactions of imines, which was that the breaking of a C?N π bond was much more difficult than the breaking of a C?C π bond. After systematic examination of a series of substituted imines, (Z)‐N‐amino imine and N‐acetyl imine were found to have relatively low barriers of migratory insertion, so that they might be possible substrates for intermolecular Heck‐type coupling.  相似文献   

16.
Second‐order rate constants (k1) have been measured spectrophotometrically for reactions of 2‐methoxy‐3‐X‐5‐nitrothiophene 1a‐c (X = NO2, CN, and COCH3) with secondary cyclic amines (pyrrolidine 2a , piperidine 2b , and morpholine 2 c ) in CH3CN and 91:9 (v/v) CH3OH/CH3CN at 20°C. The experimental data show that the rate constants (k1) values exhibit good correlation with the parameters of nucphilicity (N) of the amines 2a‐c and are consistent with the Mayr's relationship log k (20°C) = s(E + N). We have shown that the electrophilicity parameters E derived for 1a–c and those reported previously for the thiophenes 1d‐g (X = SO2CH3, CO2CH3, CONH2, and H) are linearly related to the pKa values for their gem‐dimethoxy complexes in methanol. Using this correlation, we successfully evaluated the electrophilicity E values of 12 structurally diverse electrophiles in methanol for the first time. In addition, a satisfactory linear correlation (r2 = 0.9726) between the experimental (log kexp) and the calculated (log kcalcd) values for the σ‐complexation reactions of these 12 electrophiles with methoxide ion in methanol has been observed and discussed.  相似文献   

17.
Zwitterionic diazeniumdiolates of the form RN[N(O)NO?](CH2)2NH2+R, where R=CH3 ( 1 ), (CH2)3CH3 ( 2 ), (CH2)5CH3 ( 3 ), and (CH2)7CH3 ( 4 ) were synthesized by reaction of the corresponding diamines with nitric oxide. Spectrophotometrically determined pKa(O) values, attributed to protonation at the terminal oxygen of the diazeniumdiolate group, show shifts to higher values in dependence of the chain lengths of R. The pH dependence of the decomposition of NO donors 1 – 3 was studied in buffered solution between pH 5 and 8 at 22 °C, from which pKa(N) values for protonation at the amino nitrogen, leading to release of NO, were estimated. It is shown that the decomposition of these diazeniumdiolates is markedly catalyzed by anionic SDS micelles. First‐order rate constants for the decay of 1 – 4 were determined in phosphate buffer pH 7.4 at 22 °C as a function of SDS concentration. Micellar binding constants, KSM, for the association of diazeniumdiolates 1 – 3 with the SDS micelles were also determined, again showing a significant increase with increasing length of the alkyl side chains. The decomposition of 1 – 3 in micellar solution is quantitatively described by using the pseudo‐phase ion‐exchange (PIE) model, in which the degree of micellar catalysis is taken into account through the ratio of the second‐order rate constants (k2m/k2w) for decay in the micelles and in the bulk aqueous phase. The decay kinetics of 1 – 3 were further studied in the presence of cosolvents and nonionic surfactants, but no effect on the rate of NO release was observed. The kinetic data are discussed in terms of association to the micelle–aqueous phase interface of the negatively charged micelles. The apparent interfacial pH value of SDS micelles was evaluated from comparison of the pH dependence of the first‐order decay rate constants of 2 and 3 in neat buffer and the rate data obtained for the surfactant‐mediated decay. For a bulk phase of pH 7.4, an interfacial pH of 5.7–5.8 was determined, consistent with the distribution of H+ in the vicinity of the negatively charged micelles. The data demonstrate the utility of 2 and 3 as probes for the determination of the apparent pH value in the Stern region of anionic micelles.  相似文献   

18.
Coordination studies on Zn(II) complexes of 1,3,5‐tri(2,5‐diazahexyl)benzene (L) show that by comparison with the non‐deprotonation of complex ZnL in a 1:1 system, the three‐dimensional complexiaton decreases the pKa of the Zn‐bound water molecule, that is, pKa = 7.47 for trinulclear complex Zn3L in a 3:1 metal–ligand ratio. These two types of zinc(II) complexes have been examined as catalysts for the hydrolysis of 4‐nitrophenyl acetate (NA) in 10% (v/v) CH3CN at 298 K, I = 0.10 mol dm?3 KNO3 at pH range 6.5–8.2 and 8.5–10, respectively. Kinetic studies show that the second‐order rate constants of NA‐hydrolysis catalyzed by complexes ZnL, Zn3L, and Zn3LH?1 are 0.021, 0.0082, and 0.342 mol?1 dm3 s?1, respectively. In all the cases, the pH‐dependent observed first‐order rate constant, kobs, shows sigmoidal pH–rate profile. The 1:1 complex ZnL–H2O undergoes NA hydrolysis by direct rate‐determining hydrolysis to produce 4‐nitrophenol(ate) (NP?) and ZnL(OOCCH3); while in the 3:1 system the oxygen atom of acetic group forms a H‐bond with the Zn(II)‐bound water of the second branch of tripod indicating that the polynuclear centers are associated and bi‐functional. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 41–48 2004  相似文献   

19.
The protonation‐deprotonation equilibrium of 6‐benzylaminopurine (6‐BAP) and its derivatives was studied by potentiometry and voltammetry. The effect of Cl‐ or OCH3‐group in position 2′, 3′ and 4′ of the benzene ring of 6‐BAP on both pKa values was investigated. To determine the enthalpy and entropy, the temperature dependence of pKa was employed. It was found that with increasing temperature the pKa decreased. In comparison with 6‐BAP the chloro‐ or methoxy‐ group resulted in pKa increase. The first pKa values were also determined by linear sweep (LSV) and elimination voltammetry with linear scan (EVLS). New approaches were shown not only for the determination of pKa from voltammetric titration curves but also for the evaluation of the reduction processes of benzylaminopurines.  相似文献   

20.
4‐Aminobipyridine derivatives form strong inclusion complexes with cucurbit[6]uril, exhibiting remarkably large enhancements in fluorescence intensity and quantum yields. The remarkable complexation‐induced pKa shift (ΔpKa=3.3) highlights the strong charge–dipole interaction upon binding. The reversible binding phenomenon can be used for the design of switchable beacons that can be incorporated into cascades of binding networks. This concept is demonstrated herein by three different applications: 1) a switchable fluorescent beacon for chemical sensing of transition metals and other ligands; 2) direct measurement of binding constants between cucurbit[6]uril and various nonfluorescent guest molecules; and 3) quantitative monitoring of biocatalytic reactions and determination of their kinetic parameters. The latter application is illustrated by the hydrolysis of an amide catalyzed by penicillin G acylase and by the elimination reaction of a β‐cabamoyloxy ketone catalyzed by aldolase antibody 38C2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号