首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Acid-base bifunctional heterogeneous catalysts were prepared by the reaction of an acidic silica-alumina (SA) surface with silane-coupling reagents possessing amino functional groups. The obtained SA-supported amines (SA-NR2) were characterized by solid-state 13C and 29Si NMR spectroscopy, FT-IR spectroscopy, and elemental analysis. The solid-state NMR spectra revealed that the amines were immobilized by acid-base interactions at the SA surface. The interactions between the surface acidic sites and the immobilized basic amines were weaker than the interactions between the SA and free amines. The catalytic performances of the SA-NR2 catalysts for various carbon-carbon bond-forming reactions, such as cyano-ethoxycarbonylation, the Michael reaction, and the nitro-aldol reaction, were investigated and compared with those of homogeneous and other heterogeneous catalysts. The SA-NR2 catalysts showed much higher catalytic activities for the carbon-carbon bond-forming reactions than heterogeneous amine catalysts using other supports, such as SiO2 and Al2O3. On the other hand, homogeneous amines hardly promoted these reactions under similar reaction conditions, and the catalytic behavior of SA-NR2 was also different from that of MgO, which was employed as a typical heterogeneous base. An acid-base dual-activation mechanism for the carbon-carbon bond-forming reactions is proposed.  相似文献   

2.
Detailed surface reaction mechanism in a three-way catalyst   总被引:1,自引:0,他引:1  
Chatterjee D  Deutschmann O  Warnatz J 《Faraday discussions》2001,(119):371-84; discussion 353-70
  相似文献   

3.
Metal–support cooperative catalysts have been developed for sustainable and environmentally benign molecular transformations. The active metal centers and supports in these catalysts could cooperatively activate substrates, resulting in high catalytic performance for liquid‐phase reactions under mild conditions. These catalysts involved hydrotalcite‐supported gold and silver nanoparticles with high catalytic activity for organic reactions such as aerobic oxidation, oxidative carbonylation, and chemoselective reduction of epoxides to alkenes and nitrostyrenes to aminostyrenes using alcohols and CO/H2O as reducing reagents. This high catalytic performance was due to cooperative catalysis between the metal nanoparticles and basic sites of the hydrotalcite support. To increase the metal–support cooperative effect, core–shell nanostructured catalysts consisting of gold or silver nanoparticles in the core and ceria supports in the shell were designed. These core–shell nanocomposite catalysts were effective for the chemoselective hydrogenation of nitrostyrenes to aminostyrenes, unsaturated aldehydes to allyl alcohols, and alkynes to alkenes using H2 as a clean reductant. In addition, these solid catalysts could be recovered easily from the reaction mixture by simple filtration, and were reusable with high catalytic activity.  相似文献   

4.
We have developed peptide catalysts and antibody catalysts that catalyze aldol, retro-aldol, and Michael reactions via an enamine mechanism using reaction-based selections with 1,3-diketone derivatives. Nucleophilic amino groups of the catalysts were covalently trapped during the selections. We have also developed fluorogenic substrates that are useful for real-time monitoring of the progress of bond-forming reactions, such as aldol reactions, by an increase in fluorescence. These fluorogenic substrates have been used to monitor peptide-catalyzed, antibody-catalyzed, enzyme-catalyzed, and small molecule-catalyzed reactions. Catalysis-based screening using fluorogenic substrates will accelerate rapid identification of superior catalysts and reaction conditions.  相似文献   

5.
Supported catalysts have become valuable tools for simplified product isolation and catalyst recycling. The common method is covalent attachment to a solid support. An alternative strategy is to immobilize catalysts by non-covalent bonding through hydrogen bridges, ionic, hydrophobic or fluorous interactions. Compared to covalent attachment, such non-covalent approaches increase the flexibility in the choice of the support-material, reaction conditions and work-up strategies. Numerous catalytic reactions employing one of these non-covalent fixation strategies have meanwhile appeared in the literature.  相似文献   

6.
The catalytic potential of organo-onium iodides as nucleophilic catalysts is aptly demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide (CO2), as a representative CO2 utilization reaction. Although organo-onium iodide nucleophilic catalysts are metal-free environmentally benign catalysts, harsh reaction conditions are generally required to efficiently promote the coupling reactions of epoxides and CO2. To solve this problem and accomplish efficient CO2 utilization reactions under mild conditions, bifunctional onium iodide nucleophilic catalysts bearing a hydrogen bond donor moiety were developed by our research group. Based on the successful bifunctional design of the onium iodide catalysts, nucleophilic catalysis using a potassium iodide (KI)-tetraethylene glycol complex was also investigated in coupling reactions of epoxides and CO2 under mild reaction conditions. These effective bifunctional onium and potassium iodide nucleophilic catalysts were applied to the solvent-free syntheses of 2-oxazolidinones and cyclic thiocarbonates from epoxides.  相似文献   

7.
New catalytic C--Si bond-forming reactions using chlorosilanes are described. These reactions proceed efficiently under mild conditions by the combined use of Grignard reagents and transition metal catalysts, such as Ti, Zr, Ni, and Pd. It is proposed that ate complex intermediates formed by the reaction of transition metals with Grignard reagents play important roles as the active catalytic species. The present study demonstrates the practical use of chlorosilanes in transition metal catalyzed silylation reactions providing convenient methods for allyl- or vinylsilane synthesis. The reaction pathways of these transformations as well as the scope and limitations are discussed.  相似文献   

8.
Due to excellent performance properties such as strong activity and high selectivity, single-atom catalysts have been widely used in various catalytic reactions. Exploring the application of single-atom catalysts and elucidating their reaction mechanism has become a hot area of research. This article first introduces the structure and characteristics of single-atom catalysts, and then reviews recent preparation methods, characterization techniques, and applications of single-atom catalysts, including their application potential in electrochemistry and photocatalytic reactions. Finally, application prospects and future development directions of single-atom catalysts are outlined.  相似文献   

9.
The development of catalysts that can operate under exceptionally harsh and unconventional conditions is of critical importance for the transition of the energy and chemicals industries to low-emission and renewable chemical feedstocks. In this review we will highlight materials and more specifically metal-containing zeolite catalysts that have been tested under harsh reaction conditions such as high temperature light alkane conversion and biomass valorization. Particular attention will be given to studies that explore the stability and recyclability of metal-containing zeolite catalysts operating in continuous modes. Metal-containing zeolites are considered as an important class of catalysts operating outside the comfort zone of current heterogeneous catalytic reactions in both gas and liquid phase reactions. The relationship between the properties of the metal-containing zeolite and catalytic performance will be explored.  相似文献   

10.
2‐Substituted benzimidazoles have been synthesized in excellent yields under solvent‐free conditions using a series of acidic ionic liquids as catalysts. The results indicate that SO3H‐functionalized ionic liquids show higher catalytic activities than other acidic ionic liquids. The effects of reaction conditions such as the amounts of ionic liquids, the ratio of reactants were investigated. A Hammett method was used to determine the acidity order of these ionic liquids and the results were found to be relevant to the catalytic activities observed in the synthesis reaction. Besides, the reaction mechanism was stimulated using DFT method.  相似文献   

11.
Amide C?N bonds are thermodynamically stable and their fission, such as by hydrolysis and alcoholysis, is considered a long‐challenging organic reaction. In general, stoichiometric chemical transformations of amides into the corresponding esters and acids require harsh conditions, such as strong acids/bases at a high reaction temperature. Accordingly, the development of catalytic reactions that cleave not only primary and secondary amides, but also tertiary amides in mild conditions, is in high demand. Herein, we surveyed typical stoichiometric transformations of amides, and highlight our recent achievements in the catalytic esterification of amides using scandium, manganese, and zinc catalysts, together with some recent catalyst systems using late‐transition metal reported by other groups.  相似文献   

12.
The first catalytic enantioselective hetero-Diels-Alder reaction between Brassard's diene and aldehydes has been achieved through hydrogen-bonding activation using TADDOL derivatives as catalysts to afford the corresponding delta-lactone derivatives in moderate-to-good yields and with high enantioselectivities (up to 91 % ee). The reactions can be carried out either under solvent-free conditions or in toluene. On the basis of the absolute configurations of the products and the hydrogen-bonding interaction pattern between TADDOL (alpha,alpha,alpha',alpha'-tetraaryl-1,3-dioxolan-4,5-dimethanol) and the carbonyl group disclosed by X-ray diffraction analysis, a possible mechanism for the catalytic reaction has been proposed. To demonstrate the usefulness of the methodology, a natural product, (S)-(+)-dihydrokawain, has also been prepared in 50 % isolated yield and with 69 % enantioselectivity in one step starting from 3-phenylpropionaldehyde by using this methodology. Therefore, this catalytic system is one of the most direct approaches to the construction of delta-lactone units, which will make the methodology very attractive for the synthesis of a variety of biologically important compounds and natural products.  相似文献   

13.
高Cu含量MCM-41在苯直接羟基化反应中的催化性能   总被引:6,自引:0,他引:6  
 考察了高铜含量(最高达26.0%)且铜原子主要处于中孔骨架的Cu-MCM-41在苯/过氧化氢直接羟基化制备苯酚反应中的催化性能,研究了铜含量、催化剂用量、溶剂种类、反应物摩尔比、温度以及时间等对催化剂活性的影响. 结果表明,该催化剂在苯直接羟基化反应中具有良好的催化活性,在最佳反应条件下,可使苯转化率达52.9%, 苯酚选择性达58.9%, 苯酚收率达31.2%, 优于文献报道的低铜含量中孔分子筛的催化结果. 另外,从反应机理对影响反应的因素进行了初步探讨.  相似文献   

14.
本文评述了修饰型多相手性催化剂在不对称合成中的应用。按照不同的制备方法及催化反应对一些多相催化体系进行了归类总结, 包括过渡金属手性配合物的固相化、修饰型手性固体催化剂、手性分子筛及嵌入型粘土手性催化剂。对酒石酸及金鸡纳碱修饰型金属催化剂的反应机理也进行了探讨。  相似文献   

15.
The catalytic performance of metal–organic frameworks (MOFs) for the synthesis of cyclic carbonate from carbon dioxide and epoxides has been explored under solvent and solvent‐free conditions, respectively. It was found that MOF catalysts have significantly improved catalytic activities in solvent‐free CO2 cycloaddition reactions than those in solvent. The mechanism was discussed with regard to the competition of solvent with substrate to adhere MOF catalysts during the reaction process.  相似文献   

16.
Carbonylation of olefins, alcohols and halides using homogeneous as well as heterogeneous catalysts has been discussed. Highlights of contributions on the activity, selectivity and stability of catalysts for carbonylation reactions are discussed. Kinetics and mechanism including characterization of the intermediate catalytic species has also been reviewed. The performance of anchored Pd complexes on mesoporous supports (MCM-41 and MCM-48), water soluble Pd complexes and supported Pd catalysts in carbonylation of aryl alcohols and olefins has been discussed in the context of catalyst-product separation. Some aspects of kinetic modelling and reaction engineering of these multiphase catalytic reactions have also been reviewed.  相似文献   

17.
Knoevenagel condensations are especially important reactions for the synthesis of alkene compounds having electron-withdrawing groups such as COR,CN,COOR,NO2 etc. Recently, transition metal hydride ruthenium1, hydride and polyhydride rhenium2, and polyhydride iridium complexes have been found to be the efficient catalysts for Knoevenagle condensation. However the mentioned-above transition metal hydride complexes are not easily prepared. In addition, all of them are oxygen and H2O-sensit…  相似文献   

18.
A complimentary diamination of alkenes by using homogeneous gold catalysts is described. The reaction is one of very few examples of homogeneous gold oxidation catalysis and proceeds with high selectivity under mild conditions. Individual steps of the suggested catalytic cycle were investigated on isolated model gold complexes, and new pathways for gold‐catalyzed amination reactions were established. The key step is an intramolecular alkyl–nitrogen bond formation from a gold(III) intermediate. This process validates the concept of reductive elimination from high oxidation catalyst states for this type of C? N bond forming reactions.  相似文献   

19.
Precise and direct two-dimensional (2D) printing of the incompatible polymer acid–base catalysts and their utility in one-pot two-step reactions were shown. Multistep catalytic reactions using incompatible catalysts in a one-pot reaction cascade requires special methods and materials to isolate the catalysts from each other. In general, this is a tedious process requiring special polymer architectures as the carrier for the catalysts to preserve the activity of otherwise incompatible catalysts. We propose the immobilization of incompatible polymer catalysts, such as polymer acid and base catalysts, on a substrate in variable sizes and amounts by precise 2D printing. The terpolymers with basic (4-vinylpyridine) and acidic (styrene sulfonic acid) functionalities and methacryloyl benzophenone as a UV cross-linking unit were used for 2D printing on poly(ethylene terephthalate) (PET). The printed meshes were immersed together in a reaction solution containing (dimethoxymethyl)benzene and ethyl cyanoformate, resulting in a two-step acid–base catalyzed cascade reaction; that is, deacetalization followed by carbon-building reaction. The time-dependent consumption of (dimethoxymethyl)benzene to the intermediate benzaldehyde and the product was monitored, and a kinetic model was developed to investigate the underlying reaction dynamics. The complexity of multistep Wolf–Lamb-type reactions was generally significantly decreased by using our approach because of the easy polymerization and immobilization procedure.  相似文献   

20.
Catalysis is one of the key techniques for people's modern life. It has created numerous essential chemicals such as biomedicines, agricultural chemicals and unique materials. Heterogeneous catalysis is the new emerging method with reusable catalysts. Among heterogenous catalysis patterns developed so far, single crystalline catalysis has become the promising one owing to its high catalytic density and selectivity resulted by the inherent porosity, orderliness of the lattices and permeability. These crystalline catalysts could be used in various reactions such as photo-dimerization, Diels-Alder reaction, CO2 transformation and so on. In this review, we highlighted the reported works about the single crystalline catalysts. Both discrete small molecules and metal-organic frameworks (MOFs) have been used to prepare single crystals for catalysis. For discrete molecules based crystalline catalysts, coordinated and covalent molecules have been used. There were more catalytic modes in crystalline MOF catalysts. Three patterns were identified in this review: single crystalline MOFs i) without catalytic sites, ii) with inherent catalytic features and iii) with introducing catalytic units by post synthetic modification. Based on these examples, this review committed to provide the inspirations for the further design and application of single crystalline materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号