首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
Zinc oxide (ZnO) nanostructures have attracted much interest due to their potential applications in various fields including optoelectronics, glass industries, and solar cells. These compounds hold the promise of creating new materials that can advance energy technologies. In this work, a series of (ZnO)6 clusters with selenium and tellurium applied as substitutional impurities has been studied. The investigated structures have been produced through the doping of (ZnO)6 clusters by replacing an oxygen atom with a selenium or a tellurium atom at each time. The ground state geometric parameters of (ZnO)6 structures, containing selenium or tellurium atoms as substitutional impurities, were calculated using density functional theory (DFT) with B3LYP and LanL2DZ basis set. Excited state energies and absorption wavelengths were computed using time‐dependent‐DFT (TDDFT). For the calculation of emission wavelengths, Hartree–Fock configuration interaction singles (HF/CIS) has been used in order to perform the excited state geometry optimization. This work led to some important results that can be helpful for developing novel THz sensitive materials and imaging detectors that may be an alternative to x‐rays detectors for radiology as well as for the development of solar cells and electroluminescent diodes. Zinc oxide (ZnO) nanostructures have attracted growing interest due to their potential applications in many technological fields, including optoelectronics, the glass industry, and energy. The presence of impurities, in particular selenium and tellurium, in ZnO‐based clusters can affect their structural and spectroscopic properties. Some of these doped nanostructures have favorable Terahertz emission characteristics that make them good candidates for applications in biology and medicine.  相似文献   

3.
Several experimental studies have produced contradictory results on the effects of extremely low frequency (ELF) magnetic fields on cellular processes involving calcium ions. Furthermore, the few positive results have not been independently replicated. In most of these studies, isolated cells were used. Our study used mouse islets of Langerhans, in which very regular oscillations of calcium concentration can be observed at length. These oscillations are sustained by processes that imply energetic and inter-intracellular communication. Various magnetic fields were applied, either sinusoidal at different frequencies (50 Hz or multiples of the natural oscillation frequency) at 0.1 or 1 mT or static at 1 mT. Islets were also exposed to "cyclotron resonance" conditions. There was neither alteration of the fundamental oscillation frequency nor the degree of organisation under all exposure conditions. Using this sensitive model, we could not show new evidence of alterations of calcium processes under exposure to various magnetic fields.  相似文献   

4.
Both formal and numerical analyses have been carried out on various exact and approximate variants of the four-component relativistic theory for nuclear magnetic shielding constants. These include the standard linear response theory (LRT), the full or external field-dependent unitary transformations of the Dirac operator, as well as the orbital decomposition approach. In contrast with LRT, the latter schemes take explicitly into account both the kinetic and magnetic balances between the large and small components of the Dirac spinors, and are therefore much less demanding on the basis sets. In addition, the diamagnetic contributions, which are otherwise "missing" in LRT, appear naturally in the latter schemes. Nevertheless, the definitions of paramagnetic and diamagnetic terms are not the same in the different schemes, but the difference is only of O(c(-2)) and thus vanishes in the nonrelativistic limit. It is shown that, as an operator theory, the full field-dependent unitary transformation approach cannot be applied to singular magnetic fields such as that due to the magnetic point dipole moment of a nucleus. However, the inherent singularities can be avoided by the corresponding matrix formulation (with a partial closed summation). All the schemes are combined with the Dirac-Kohn-Sham ansatz for ground state calculations, and by using virtually complete basis sets a new and more accurate set of absolute nuclear magnetic resonance shielding scales for the rare gases He-Rn have been established.  相似文献   

5.
6.
Hirabayashi J  Kuno A  Tateno H 《Electrophoresis》2011,32(10):1118-1128
Glycans exist in nature in various forms of glycoconjugates, i.e., glycoproteins, glycolipids, and glycosaminoglycans, either in soluble or membrane-bound forms. One of their prominent properties distinguished from nucleic acids and proteins is "heterogeneity" largely attributed to their inherent features of biosynthesis. In general, various methods based on the physicochemical principles have been taken for their separation and structural determination although all of them require prior liberation of glycans and appropriate labeling. On the other hand, a series of carbohydrate-binding proteins, or "lectins," have extensively been used in a more direct manner for cell typing, histochemical staining, and glycoprotein fractionation. Although most procedures conventionally used are useful, unfortunately they lack "throughput" comparable to a performance required for current omics studies. Recently, a novel technique called lectin microarray has attracted increasing attention from not only glycoscientists but also researchers in other fields, because it is straightforward and also informative. The method is innovating in that it enables direct approach to glycoconjugates such as glycoproteins and even cells without liberation of glycans from the core substrate, and therefore can be effectively applied for the sake of differential profiling in various fields. Concept, strategy, and technical advancement of lectin microarray are described. Also, as an introduction to glycomics, the authors explain the motivation to challenge this theme.  相似文献   

7.
A preprint is a research article made publicly available prior to formal publication. A preprint server is a freely available archive and distribution medium for preprints, allowing rapid dissemination and use of multimedia and supporting files. Electronic eprints have been widely adopted in certain fields (notably high energy physics), but, until recently, the preprint concept has not been received with enthusiasm by most chemists. Despite the fact that preprints have the advantage of rapid publication, chemists have been reluctant to produce them because they could be viewed as "unallowable" for research assessment or tenure exercises or for publication in certain prestigious journals. In theory, preprints, together with version control and online discussion, could be a useful compromise: rapid prepublication followed by open peer review, before publication in a traditional journal. This paper constitutes a preliminary evaluation of a Chemistry Preprint Server in its second year of operation and summarizes the lessons that can be learned from the experiment to date.  相似文献   

8.
Graphene has been viewed as one of the most promising materials in many fields. Recently, it has been found that by using Cu-decoration at the edge of zigzag graphene nanoribbons (ZGNR), a novel kind of planar tetracoordinate carbon (ptC) strip can be formed. In this paper, we investigate the edge-decoration of armchair graphene nanoribbons (AGNR) by various atom types and find that two new kinds of ptC strip can be effectively formed by using Be or B decoration. For the Be-decorated AGNR, the edge Be atoms take the form of a "zigzag-like" chain, and all the edge C atoms have a ptC nature. However, for the B-decorated AGNR, the edge B atoms form an infinite yet "fractured" chain consisting of separate B(4)-subunits, which results in only 50% of the edge C atoms being ptCs, in contrast with Be-decorated AGNR and Cu-decorated ZGNR. The high thermal stability of both types of ptC-based AGNR is indicated by isomeric sampling and molecular dynamics simulations.  相似文献   

9.
An intelligent magnetic hydrogel (ferrogel) was fabricated by mixing poly(vinyl alcohol) (PVA) hydrogels and Fe3O4 magnetic particles through freezing-thawing cycles. Although the external direct current magnetic field was applied to the ferrogel, the drug was accumulated around the ferrogel, but the accumulated drug was spurt to the environment instantly when the magnetic fields instantly switched "off". Furthermore, rapid to slow drug release can be tunable while the magnetic field was switched from "off" to "on" mode. The drug release behavior from the ferrogel is strongly dominated by the particle size of Fe3O4 under a given magnetic field. The best "magnetic-sensitive effects" are observed for the ferrogels with larger Fe3O4 particles due to its stronger saturation magnetization and smaller coercive force. Furthermore, the amount of drug release can be controlled by fine-tuning of the switching duration time (SDT) through an externally controllable on-off operation in a given magnetic field. It was demonstrated that the highest burst drug amounts and best "close" configuration of the ferrogel were observed for the SDT of 10 and 5 min, respectively. By taking these peculiar magnetic-sensitive characteristics of the novel ferrogels currently synthesized, it is highly expected to have a controllable or programmable drug release profile that can be designed for practical clinical needs.  相似文献   

10.
The properties of polymers near an interface are altered relative to their bulk value due both to chemical interaction and geometric confinement effects. For the past two decades, the dynamics of polymers in confined geometries (thin polymer film or nanocomposites with high‐surface area particles) has been studied in detail, allowing progress to be made toward understanding the origin of the dynamic effects near interfaces. Observations of mechanical property enhancements in polymer nanocomposites have been attributed to similar origins. However, the existing measurement methods of these local mechanical properties have resulted in a variety of conflicting results on the change of mechanical properties of confined polymers. Here, an atomic force microscopy (AFM)‐based method is demonstrated that directly measures the mechanical properties of polymers adjacent to a substrate with nanometer resolution. This method allows us to consistently observe the gradient in mechanical properties away from a substrate in various materials systems, and paves the way for a unified understanding of thermodynamic and mechanical response of polymers. This gradient is both longer (up to 170 nm) and of higher magnitude (50% increase) than expected from prior results. Through the use of this technique, we will be better able to understand how to design polymer nanocomposites and polymeric structures at the smallest length scale, which affects the fields of structures, electronics, and healthcare.

  相似文献   


11.
The effect of solvent reaction fields and oriented electric fields on the Kemp elimination reaction between methylamine or imidazole and 5-nitrobenzisoxazole has been theoretically studied. The Kemp reaction is the most widely used for the design of new enzymes. Our results, using the SMD continuous model for solvents, are in quite good agreement with the experimental fact that the rate of the analogous reaction with butylamine is one order of magnitude smaller in water than in acetonitrile. In the case of external electric fields, our results show that they can increase or decrease the energy barrier depending on the magnitude and orientation of the field. A duly oriented electric field may have a notable catalytic effect on the reaction. So, external electric fields and reaction fields due to the medium can contribute to the design of new enzymes. Several factors that must be taken into account to increase the catalytic effect are discussed.  相似文献   

12.
Teng Q  Ekman DR  Huang W  Collette TW 《The Analyst》2012,137(9):2226-2232
There is a pressing need to increase the throughput of NMR analysis in fields such as metabolomics and drug discovery. Direct injection (DI) NMR automation is recognized to have the potential to meet this need due to its suitability for integration with the 96-well plate format. However, DI NMR has not been widely used as a result of some insurmountable technical problems; namely: carryover contamination, sample diffusion (causing reduction of spectral sensitivity), and line broadening caused by entrapped air bubbles. Several variants of DI NMR, such as flow injection analysis (FIA) and microflow NMR, have been proposed to address one or more of these issues, but not all of them. The push-through direct injection technique reported here overcomes all of these problems. The method recovers samples after NMR analysis, uses a "brush-wash" routine to eliminate carryover, includes a procedure to push wash solvent out of the flow cell via the outlet to prevent sample diffusion, and employs an injection valve to avoid air bubbles. Herein, we demonstrate the robustness, efficiency, and lack of carryover characteristics of this new method, which is ideally suited for relatively high throughput analysis of the complex biological tissue extracts used in metabolomics, as well as many other sample types. While simple in concept and setup, this new method provides a substantial improvement over current approaches.  相似文献   

13.
14.
Chitosan (CS) is a natural polymer with a positive charge, a deacetylated derivative of chitin. Chitosan nanostructures (nano-CS) have received increasing interest due to their potential applications and remarkable properties. They offer advantages in stomatology due to their excellent biocompatibility, their antibacterial properties, and their biodegradability. Nano-CSs can be applied as drug carriers for soft tissue diseases, bone tissue engineering and dental hard tissue remineralization; furthermore, they have been used in endodontics due to their antibacterial properties; and, finally, nano-CS can improve the adhesion and mechanical properties of dental-restorative materials due to their physical blend and chemical combinations. In this review, recent developments in the application of nano-CS for stomatology are summarized, with an emphasis on nano-CS’s performance characteristics in different application fields. Moreover, the challenges posed by and the future trends in its application are assessed.  相似文献   

15.
酞菁拥有高度离域的二维18π电子共轭体系、易于调变的分子结构、优良的热和化学稳定性和易于处理加工等特点,可以在很宽的范围内剪裁它们的物理、光电和化学参数,其潜在的巨大应用价值已受到科学与企业界的广泛关注和研究。与[60]富勒烯一样,酞菁分子也可以通过共价键合的方式引入到高分子主链或侧链形成不同类型的高分子,亦可得到诸如酞菁网状高分子和树枝状酞菁大分子等高分子材料;与适宜的高分子材料掺杂或共混能形成含酞菁的高分子复合材料。本文详细地介绍了近年来酞菁高分子修饰与光电性质研究进展。  相似文献   

16.
The layer‐by‐layer (LbL) deposition technique is widely used to develop multilayered films based on the directed assembly of complementary materials. In the last decade, thin multilayers prepared by LbL deposition have been applied in biological fields, namely, for cellular encapsulation, due to their versatile processing and tunable properties. Their use was suggested as an alternative approach to overcome the drawbacks of bulk hydrogels, for endocrine cells transplantation or tissue engineering approaches, as effective cytoprotective agents, or as a way to control cell division. Nanostructured multilayered materials are currently used in the nanomodification of the surfaces of single cells and cell aggregates, and are also suitable as coatings for cell‐laden hydrogels or other biomaterials, which may later be transformed to highly permeable hollow capsules. In this Focus Review, we discuss the applications of LbL cell encapsulation in distinct fields, including cell therapy, regenerative medicine, and biotechnological applications. Insights regarding practical aspects required to employ LbL for cell encapsulation are also provided.  相似文献   

17.
Treatment of the radiated field from a toroid antenna as two A fields in resonance or a field, and the toroid as a field radiator, results in the prediction of (i) omnidirectional radiation patterns (with small indentations at the poles), and (ii) periodic resonances in the driving conditions. These predictions have been confirmed experimentally, giving validity to the fundamental nature of this topological and group theory understanding of the first order determinants of electromagnetic field dynamics. Resonant gauge () fields are produced by a toroid radiator as either propagating or standing waves. In the case of a torus with a single winding, an alternating current driver will produce a series of nonmeasurable A vector potential resonances, which overlap and combine into measurable phase factor or gauge field, , waves. Such waves, although generated on a toroidal-solenoidal structure of nonsimple topology, are yet spherical waves – either standing spherical waves, or propagating spherical waves. The topological constraints of electromagnetic fields mapped to a torus driven by single or double wiring are described. It is shown that such mapping results in group symmetries higher than U(1), e.g., SU(2), and that electromagnetic activity is affected by such mapping, being determined by the symmetry forms. Underpinning these symmetry forms are topological conservation laws. The toroid antenna exhibits a series of low and high impedances and permits a U(1) to SU(2) mapping of e.m. fields over a fiber bundle, as well as a mapping of rational and real numbers to complex numbers (in S3 for the nonresonant condition) and quaternions (in S4 for the resonant condition). When in resonance, the singly-wound and the doubly-wound (caduceous) torus emits radiation in SU(2)/Z2 form. The fields emitted for the resonantly driven toroid are alternatively self-dual and anti-self-dual (i.e., instanton solutions to the Maxwell equations of S4). In resonance, the singly wound and the doubly wound torus produce fields which are both multiply connected, and of SU(2)/Z2 form (homeomorphic to S3), as well as simply connected, and of SU(2) from (homeomorphic to S4). This study has implications far beyond the immediate subject. If the conventional theory of electromagnetism, i.e., Maxwell's theory, which is of U(1) symmetry form, is but the simplest local theory of electromagnetism, then those pursuing a unified field theory may wish to consider as a candidate field for unification not only this simple local theory, but other forms of conditioned electromagnetism. As is shown here, other such forms can be either force fields or gauge fields of higher group symmetry, e.g., SU(2) and above.  相似文献   

18.
We present a theoretical framework which describes multiply charged atomic ions, their stability within super-intense laser fields, and also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H(-), H(2 -), He, He(-), He(2 -), He(3 -) within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind "additional" electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown. These nodes are spaced far enough from each other to minimize the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess electrons into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D = 3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields.  相似文献   

19.
Scientific interest in the interaction of nonionizing electromagnetic fields with biological systems is longstanding, but often still controversial. Theories, models and computer simulations have usually emphasized physical interactions with subsystems (e.g. cell membranes) of a biological system. By extending this first necessary physical step to a second step of explicitly and quantitatively considering chemical changes, increased understanding appears possible. In the case of "strong fields", the role of field-altered chemistry is important to electrochemotherapy [Biochem. Pharmacol. 42, Suppl. (1991) 567] and creation of transdermal microconduits [Bioelectrochem. Bioenerg. 49 (1999) 11; J. Controlled Release 61 (1999) 185; J. Invest. Dermatol. 116 (2001) 40] For "weak fields" (a topic with much more controversy) consideration of chemical change shows that organized multicellular systems can be understood to respond to extremely small electric [Chaos 8 (1998) 576] or magnetic fields [Nature 405 (2000) 707]. In contrast, isolated individual cells interacting via voltage-gated channels [Proc. Natl. Acad. Sci. 92 (1995) 3740; Biophys. J. 75 (1998) 2251; Bioelectromagnetics 20 (1999) 102], or processes without "temperature compensation" [Biophys. J. 76 (1999) 3026], appear implausible. Satisfactory understanding is likely only if experimental and theoretical work is reconciled, which should therefore be emphasized. The interaction of electromagnetic fields with biological systems is of interest because of fundamental scientific curiosity, potential medical benefits and possible human health hazards.  相似文献   

20.
 In this paper we summarise the effects induced by electric and magnetic fields on the mobility and shape of polymer gels containing a complex fluid as a swelling agent. Magnetic-field-sensitive gel beads and monolith gels have been prepared by introducing magnetic particles of colloidal size into chemically cross-linked poly(N-isopropylacrylamide) and poly(vinyl alcohol) hydrogels. The influence of uniform and nonuniform fields has been studied. In uniform magnetic fields the gel beads form straight chainlike structures, whereas in nonhomogeneous fields the beads aggregates due to the magnetophoretic force directed to the highest field intensity. The ability of magnetic-field-sensitive gels to undergo quick, controllable changes in shape can be used to mimic muscular contraction. Received: 26 July 1999/Accepted: 27 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号