首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Metal ion specificity studies of divinylbenzene (DVB)-crosslinked polyacrylamide-supported glycines in different structural environments were investigated. The effect of the degree of crosslinking on the specific rebinding of the desorbed metal ion was investigated towards Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal ion-desorbed resins showed specificity for the desorbed metal ion and the specificity characteristics increases with an increasing degree of the crosslinking agent. The polymeric ligands and metal complexes were characterized by IR, UV-visible and EPR spectra, and by SEM analysis. The swelling and solvation characteristics of the crosslinked polymers, polymeric ligands and metal complexes, the effect of the pH dependence on metal ion binding and rebinding and the kinetics of metal ion binding and rebinding were also followed. The complexation resulted in the downfield shift of the carboxylate peak in the IR spectra. The EPR parameters are in agreement with a distorted tetragonal geometry. The Cu(II) ion-desorbed resins selectively rebinds Cu(II) ions from a mixture of Cu(II) and Co(II) and Cu(II) and Ni(II) ions. The resin could be regenerated several times without loss of capacity and effective for the specific and selective rebinding of Cu(II) ions.  相似文献   

2.
Pathak R  Rao GN 《Talanta》1997,44(8):1447-1453
A poly[styrene-co-(divinylbenzene)] resin (XAD-4) functionalized with 1-hydrazinophthalazine ligand has been prepared and its analytical properties investigated. The pH dependence of sorption of metal ion on the resin has been determined for Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Pb(II), Fe(III) and Cr(III). Trace amounts of these metal ions were quantitatively retained on the resin and recovered by eluting with 1 mol l(-1) hydrochloric acid. The resin was found to be selective for Fe(III) and its separation from other metal ions was carried out effectively. Metal ions concentrations were determined using AAS.  相似文献   

3.
The biosorption of nickel(II) and copper(II) ions from aqueous solution by dried Streptomyces coelicolor A3(2) was studied as a function of concentration, pH and temperature. The optimum pH range for nickel and copper uptake was 8.0 and 5.0, respectively. At the optimal conditions, metal ion uptake was increased as the initial metal ion concentration increased up to 250 mg l(-1). At 250 mg l(-1) copper(II) ion uptake was 21.8% whereas nickel(II) ion uptake was found to be as high as 7.3% compared to those reported earlier in the literature. Metal ion uptake experiments were carried out at different temperatures where the best ion uptake was found to be at 25 degrees C. The characteristics of the adsorption process were investigated using Scatchard analysis at 25 degrees C. Scatchard analysis of the equilibrium binding data for metal ions on S. coelicolor A3(2) gave rise to a linear plot, indicating that the Langmuir model could be applied. However, for nickel(II) ion, divergence from the Scatchard plot was evident, consistent with the participation of secondary equilibrium effects in the adsorption process. Adsorption behaviour of nickel(II) and copper(II) ions on the S. coelicolor A3(2) can be expressed by both the Langmuir and Freundlich isotherms. The adsorption data with respect to both metals provide an excellent fit to the Freundlich isotherm. However, when the Langmuir isotherm model was applied to these data, a good fit was obtained for the copper adsorption only and not for nickel(II) ion.  相似文献   

4.
Samal S  Acharya S  Dey RK  Ray AR 《Talanta》2002,57(6):1075-1083
Two new chelating resins (o-HAP-DDE-HCHO and o-HAP-DDE-FFD), having multiple functional groups are synthesised by condensing the Schiff base of o-hydroxyacetophenone-4,4′-diaminodiphenylether (o-HAP-DDE) with formaldehyde and furfuraldehyde, respectively. The extent of loading of metal ions Cu(II) and Ni(II) was studied in both competitive and non-competitive conditions varying the time of contact, metal ion concentration and the pH of the reaction medium. Both the resins are able to preferentially remove Cu(II) from the mixture of Cu(II) and Ni(II) at a pH 5.89 in the batch operation, maximum % uptake being 76.8 and 84.1, respectively, for o-HAP-DDE-HCHO and o-HAP-DDE-FFD. The furfuraldehyde condensed resin was found to be more effective in removing Cu(II) ions than the formaldehyde condensed resins in batch technique. The resins exhibited little affinity for alkali and alkaline earth metal ions. Further, the furfuraldehyde condensed resin was utilised in column operation for removing Cu(II) ions. Elution study with HCl (>1.0 mol l−1) resulted in removal of nearly 40–50% of loaded Cu(II) from the resin column.  相似文献   

5.
Carbon paste electrodes (CPEs) modified with different soils in their native form were prepared to create a soil-like solid phase suitable for application in studies of heavy metal ion uptake and binding interactions. The preparation of CPEs modified with five different soils was examined and their heavy metal ion uptake behavior investigated using a model Cu(II) aqueous solution. Metal ions were accumulated under open circuit conditions and were determined after a medium exchange using differential pulse anodic stripping voltammetry, applying pre-electrolysis at –0.7 V. The soil-modified CPE accumulation behavior, including the linearity of the current response versus Cu(II) concentration, the influence of the pH on the solution, and the uptake kinetics, was thoroughly investigated. The correlation between the soil-modified CPE uptake capability and the standard soil parameters, such as ion exchange capacity, soil pH, organic matter and clay content, were evaluated for all five examined soils. The influence of selected endogenous cations (K(I), Ca(II), Fe(III)) on the transfer of Cu(II) ions from a solution to the simulated soil solid phase was examined and is discussed. Preliminary examinations of the soil-modified CPE uptake behavior with some exogenous heavy metal ions of strong environmental interest (Pb(II), Hg(II), Cd(II) and Ag(I)) are also presented. This work demonstrates some attractive possibilities for the application of a soil-modified CPE in studying soil-heavy metal ion binding interactions, with a further potential use as a new environmental sensor appropriate for fast on-site testing of polluted soils.  相似文献   

6.
Carbon paste electrodes (CPEs) modified with different soils in their native form were prepared to create a soil-like solid phase suitable for application in studies of heavy metal ion uptake and binding interactions. The preparation of CPEs modified with five different soils was examined and their heavy metal ion uptake behavior investigated using a model Cu(II) aqueous solution. Metal ions were accumulated under open circuit conditions and were determined after a medium exchange using differential pulse anodic stripping voltammetry, applying preelectrolysis at -0.7 V. The soil-modified CPE accumulation behavior, including the linearity of the current response versus Cu(II) concentration, the influence of the pH on the solution, and the uptake kinetics, was thoroughly investigated. The correlation between the soil-modified CPE uptake capability and the standard soil parameters, such as ion exchange capacity, soil pH, organic matter and clay content, were evaluated for all five examined soils. The influence of selected endogenous cations (K(I), Ca(II), Fe(III)) on the transfer of Cu(II) ions from a solution to the simulated soil solid phase was examined and is discussed. Preliminary examinations of the soil-modified CPE uptake behavior with some exogenous heavy metal ions of strong environmental interest (Pb(II), Hg(II), Cd(II) and Ag(I)) are also presented. This work demonstrates some attractive possibilities for the application of a soil-modified CPE in studying soil-heavy metal ion binding interactions, with a further potential use as a new environmental sensor appropriate for fist on-site testing of polluted soils.  相似文献   

7.
Two new chelating resins possessing multiple functional groups capable of coordinating with several metal ions are reported. The resins were synthesized by condensing Schiff bases derived from 2-aminophenol, 2-hydroxy-5-chloroaniline and terephthaldehyde with formaldehyde in an alkaline medium. The effects of pH and contact time of the Cu(2+) and Pb(2+) in aqueous solutions on the uptake behavior of the resins were studied. The metal ion uptake behavior of the resins was investigated by the batch method. Both the uptake and the selectivity of the resins towards the investigated metal ions were related to the structure of the resins, type of the metal ion and the uptake conditions. The resins showed maximum uptake capacity for Cu(2+) and Pb(2+) at pH 10. Cu(2+) was seen to undergo preferential adsorption in separate and mixture solutions of Cu(2+) and Pb(2+). Kinetic studies for the resins using Langmiur equation were also performed. The Schiff base monomers and their formaldehyde resins were characterized by elemental analyses, FTIR and (1)H NMR spectroscopy. The thermal stability of the resins was studied using TGA/DTG analysis.  相似文献   

8.
Two new stable chelating resins have been synthesized incorporating the imidazolylazobenzene and 1,4-bis(imidazolylazo)benzene as functional group into Merrifield polymer through CN covalent bond and characterized by elemental analyses, IR and thermal study. A comparison of sorption capacity of newly formed resins towards the cations Ag(I), Cu(II), Zn(II), Cd(II), Hg(II) and Pb(II) as a function of pH has been studied. Kinetic studies show the time for the completeness of metal ion saturation with the resin phase. Cd(II) in trace quantities has been successfully separated and determined in different biological samples and Zn(II) in medicinal samples. It is also found that Cd(II) can be removed from water at usual pH of natural water. Both the resins can be employed for water purification as the resins reveal sorption ability towards toxic metal ions and exhibit no affinity to alkali or alkaline earth metal ions.  相似文献   

9.
The new chelate resins, abbreviated as PNBMZs and PBBMZs based on epoxide polymer, were synthesized by polycondensation of N,N-diglycidyl-4-glycidyloxyaniline or 1,4-bis(2,3-epoxypropyl)benzene with the primary amine group of 1,3-bis(benzimidazol-2yl)propylamine (BBPAH). The ion exchangers contain 2.71-3.23 mmol of the ligand contents per gram of the resin. Batch extraction capacities were determined for the metal chloride salts in buffer solutions in the pH range from -1 to 6.0. The chelate resins were very selective for Cu^2+, Zn^2+, Cd^2+ in the presence of other divalent transition metal ions. The maximum uptake capacities of PNBMZ (synthetic molar ratio = 1:1.5) under non-competitive condition were found to be 0.94 mmol/g for Cu^2+ at pH = 2, 1.3 mmol/g for Cd^2+ at pH = 1 and 1.75 mmol/g for Zn^2+ at pH = -1 respectively. While in the case of PBBMZ, it was 1.39 mmol/g for Cd〉 at pH = 1. The metal-uptake behaviors for both of them showed strong pH dependence, and their extraction capacities increase with decreasing pH. The uptake of Cu^2+ by the resin PNBMZs at pH = 1 was found to be rather fast with t1/2 = 18 min. Metal-uptake experiments under competitive conditions also confirm that the chelate resins have a high selectivity for Cu^2+, Zn^2+, Cd^2+ and the contrary pH dependence.  相似文献   

10.
The complexing properties of CM-52, Olvagel-COOH, MacroPrep 50 CM, and hypercrosslinked polystyrene MN (carboxyl-grafted sorbents) toward Cu2+, Co2+, Ni2+, Cd2+, Zn2+, Mn2+, and Pb2+ have been studied. The optimal parameters for the sorption of these metal ions from solution have been determined. The pH effect on the ion uptake has been studied. The uptake is maximal at pHs higher than 5–6. When pH is lower than 2, the indicated ions are quantitatively desorbed. Olvagel-COOH is most selective toward these ions.  相似文献   

11.
The influence of hydrolyzable metal ions (Mn(II) and Ca(II)) adsorption on the surface chemistry, particle interactions, flocculation, and dewatering behavior of kaolinite dispersions has been investigated at pH 7.5 and 10.5. Metal ion adsorption was strongly cation type- and pH-dependent and significantly influenced the zeta potential, anionic polyacrylamide-acrylate flocculant (PAM) adsorption, shear yield stress, settling rate, and consolidation of kaolinite slurries. The presence of Mn(II) and Ca(II) ions alone led to a systematic reduction in zeta potential due to specific adsorption of positively charged metal ion-based hydrolysis products at the kaolinite-water interface. Metal ion-mediated zeta potential changes were reflected by lower dispersion shear yield stresses and improved clarification (higher settling rates) but had no detectable effect on dispersion consolidation. The adsorption of PAM was significantly improved by prior addition of the metal ions. In the presence of Mn(II) or Ca(II) ions, the flocculant adsorption density was enhanced at pH 7.5 for Mn(II) and pH 10.5 for Ca(II). Optimum flocculation conditions, involving partial rather than complete particle surface coverage by both metal ions and flocculant, were identified. As a consequence, the metal ions and flocculant acted synergistically to enhance dewatering, producing particle interactions that were more conducive to high settling rates and greater consolidation of kaolinite dispersions at pH 7.5 than 10.5.  相似文献   

12.
Terpolymers prepared by condensation of o cresol and urea with formaldehyde in presence of acid catalyst (2 M HCl) proved to be selective chelating ion exchange resins for certain metal ions. The molecular weights of the synthesised terpolymers were determined by GPC Technique. TGA analysis was employed to study the thermal stability and the kinetic data like activation energy of the terpolymer resins. Chelation ion exchange properties of these terpolymers were studied for Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+ and Cd2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurements of distribution of a given metal ion between the polymer samples. The study was carried out over a wide pH range and in media of various ionic strengths.  相似文献   

13.
《Polyhedron》1999,18(26):3417-3424
Four macrocyclic trans-dioxo-tetraamines containing sulphur or oxygen as additional donors have been prepared: 1-oxa-3,14-dioxo-4,7,10,13-tetraazacyclopentadecane, 1-thia-3,14-dioxo-4,7,10,13-tetraazacyclopentadecane, 1-oxa-3,16-dioxo-4,8,11,15-tetraazacycloheptadecane and 1-thia-3,16-dioxo-4,8,11,15-tetraazacycloheptadecane. Their protonation as well as their metal binding properties with Cu2+ and Ni2+ have been determined at 25°C in 0.10 mol dm−3 KNO3. The complexation process was investigated by potentiometric, calorimetric and UV/VIS-spectroscopic titrations. IR-spectroscopy was used to establish the involvement of the amido groups in the coordination. Oxidation of the complexes to the trivalent state of the metal ion was also investigated by cyclic voltammetry. Metal ion complexation promotes the deprotonation of the amide nitrogens, resulting in a neutral complex with four nitrogen donors and a MLH-2 stoichiometry at pH 8. Additional complexes with stoichiometry ML and MLH-1 were needed to describe the complexation in the pH range 2–11. Their stability constants were calculated. The presence of oxygen or sulphur donors as well as ring enlargement influence the complexation properties. The electronic spectra indicate rather distorted tetragonal coordination geometries for the Cu(II)-complexes. The Ni(II)-complexes are all square–planar with the exception of an equilibrium between a square–planar and an octahedral form for NiL1H−2. All complexes are easily but irreversibly oxidized to the trivalent state of the metal ion.  相似文献   

14.
Purohit R  Devi S 《Talanta》1991,38(7):753-759
Oxine/formaldehyde/resorcinol and oxine/formaldehyde/hydroquinone resins have been synthesized and their physicochemical properties studied. Conditions were optimized for the preconcentration of copper by batch extraction and column chromatography with the resins. A flow-injection analysis (FIA) manifold was constructed for the determination of copper at ng levels by preconcentration on microcolumns containing the resins, stripping, and atomic-absorption spectrometry. For batch preconcentration a pH of about 2.5-3 was optimal whereas in the FIA system a broader pH range (approximately 2-3.5) could be used. Separations of binary mixtures of Cu(II) with Ni(II) or PB(II) at microg/ml level did not show any cross-contamination. In the FIA, a 2 cm long column and 2 ml/min flow-rate were adequate for quantitative uptake of copper; 50 micro1 of 0.1M hydrochloric acid quantitatively eluted the copper.  相似文献   

15.
Fujiyoshi R  Katayama M 《Talanta》1995,42(12):1931-1935
Metal exchange reactions of acetylacetonate complexes with Cd(II), Cu(II) and Zn(II) ions were investigated by using cadmium and copper ion selective electrodes. Changes in the electrode potential and pH of the solutions were monitored upon adding the pertinent metal Zn(II) of the acetylacetonate (AA) complexes. In the reverse system in which a stable Cu-AA complex exists in the solution prior to adding a secondary metal ion (Cd(II) or Zn(II)), no Cu(II) was replaced by either ion. In the systems containing Cd(II) and Zn(II) as a complexed form with AA or as free ions, the exchange reactions were not explained by considering the equilibrium stability constants of the Cd-AA and Zn-AA complexes.  相似文献   

16.
Pyridine based zirconium(IV) phosphate (PyZrP) and tin(IV) phosphate (PySnP) have been synthesized as new and novel intercalated ion exchangers. These materials have been characterized using X-ray, IR spectra, TG, DTG and DTA studies in addition to their ion exchange capacity, elution, pH titration, concentration and distribution behaviour. The distribution studies towards several metal ions in different media/concentrations have suggested that PyZrP and PySnP are selective for Hg(II) and Pb(II), respectively. As a consequence some binary separations of metal ions involving Hg(II) and Pb(II) ions have been performed on a column of these materials, demonstrating their analytical and environmental potential.  相似文献   

17.
Sorption of some univalent, divalent and trivalent metal ions has been studied on the hydrogen form of titanium arsenate and titanium tungstoarsenate gels as a function of initial solution concentration at pH 5–6. The effect of pH on maximum uptake (Qmax) has also been seen for some representative ions. Sorption of metal ion becomes almost negligible below pH 1.8, with the exception of monovalent cations. Rubidium ions exhibit interesting adsorption behaviour. The data have been compared with the exchange properties of these two inorganic ion exchangers, as reported earlier6,8.  相似文献   

18.
Dev K  Rao GN 《Talanta》1996,43(3):451-457
A polystyrenedivinylbenzene-based macroreticular resin was functionalised with bis-(N,N'-salicylidene)1,3-propanediamine ligands and its analytical properties have been investigated. The pH dependence of metal resin chelation has been determined for Cu(II), Ni(II), Co(II), Zn(II), Fe(II), Mn(II), Pb(II), Cd(II) and Cr(III). Trace amounts of these metal ions were quantitatively retained on the resin at neutral pH and easily recovered by elution with 1 N hydrochloric acid. The resin exhibits good chemical stability and fast equilibration with the metal ion making it useful for rapid concentration of trace amounts of metal ions on the resin columns.  相似文献   

19.
The binding of the transition metal ions VO2+, Fe2+, Fe3+, CO2+, Co3+, Ni2+ and Cu2+ by a poly(iminoethylene) dithiocarbamate copolymer has been investigated by uptake studies and physical measurements (electronic, IR, and ESR spectra and magnetic susceptibility). Metal ions may be bound by both the dithiocarbamato and amino groups of the co-polymer. Binding to nitrogen (in addition to binding to sulphur) increases in the order FE(II)<Ni(II)<Cu(II) and accounted for increasing metal ion uptake by the copolymer in the same order. Factors which determine the relative uptake of the metal ions by the copolymer are discussed.  相似文献   

20.
Sorption of metal ions from aqueous solution onto metal-ligand complexes of sporopollenin derivatives has been measured as a function of pH at several temperatures between 20 and 50°C. Novel metal-ligand exchange resins possessing oxime and carboxylic acid sidearm functionality were prepared through the reaction of diaminosporopollenin with dichloro-antiglyoxime and bromoacetic acid. The pH dependencies and sorption isotherms of various metal ions such as Zn(II), Cd(II), and Al(III) on the resin were investigated from aqueous solution. The sorption behavior of these metal-ligand complexes of sporopollenin derivatives and the possibilities of selectively removing and recovering heavy metals are explained on the basis of their chemical nature and complex properties and the results are interpreted in terms of the variations of pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号