首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Clustered data arise commonly in practice and it is often of interest to estimate the mean response parameters as well as the association parameters. However, most research has been directed to inference about the mean response parameters with the association parameters relegated to a nuisance role. There is little work concerning both the marginal and association structures, especially in the semiparametric framework. In this paper, our interest centers on inference on the association parameters in addition to the mean parameters. We develop semiparametric methods for both complete and incomplete clustered binary data and establish the theoretical results. The proposed methodology is illustrated through numerical studies.  相似文献   

2.
A bias-corrected technique for constructing the empirical likelihood ratio is used to study a semiparametric regression model with missing response data. We are interested in inference for the regression coefficients, the baseline function and the response mean. A class of empirical likelihood ratio functions for the parameters of interest is defined so that undersmoothing for estimating the baseline function is avoided. The existing data-driven algorithm is also valid for selecting an optimal bandwidth. Our approach is to directly calibrate the empirical log-likelihood ratio so that the resulting ratio is asymptotically chi-squared. Also, a class of estimators for the parameters of interest is constructed, their asymptotic distributions are obtained, and consistent estimators of asymptotic bias and variance are provided. Our results can be used to construct confidence intervals and bands for the parameters of interest. A simulation study is undertaken to compare the empirical likelihood with the normal approximation-based method in terms of coverage accuracies and average lengths of confidence intervals. An example for an AIDS clinical trial data set is used for illustrating our methods.  相似文献   

3.
For nonnegative measurements such as income or sick days, zero counts often have special status. Furthermore, the incidence of zero counts is often greater than expected for the Poisson model. This article considers a doubly semiparametric zero-inflated Poisson model to fit data of this type, which assumes two partially linear link functions in both the mean of the Poisson component and the probability of zero. We study a sieve maximum likelihood estimator for both the regression parameters and the nonparametric functions. We show, under routine conditions, that the estimators are strongly consistent. Moreover, the parameter estimators are asymptotically normal and first order efficient, while the nonparametric components achieve the optimal convergence rates. Simulation studies suggest that the extra flexibility inherent from the doubly semiparametric model is gained with little loss in statistical efficiency. We also illustrate our approach with a dataset from a public health study.  相似文献   

4.
The purpose of this paper is two-fold. First, for the estimation or inference about the parameters of interest in semiparametric models, the commonly used plug-in estimation for infinite-dimensional nuisance parameter creates non-negligible bias, and the least favorable curve or under-smoothing is popularly employed for bias reduction in the literature. To avoid such strong structure assumptions on the models and inconvenience of estimation implementation, for the diverging number of parameters in a varying coefficient partially linear model, we adopt a bias-corrected empirical likelihood (BCEL) in this paper. This method results in the distribution of the empirical likelihood ratio to be asymptotically tractable. It can then be directly applied to construct confidence region for the parameters of interest. Second, different from all existing methods that impose strong conditions to ensure consistency of estimation when diverging the number of the parameters goes to infinity as the sample size goes to infinity, we provide techniques to show that, other than the usual regularity conditions, the consistency holds under moment conditions alone on the covariates and error with a diverging rate being even faster than those in the literature. A simulation study is carried out to assess the performance of the proposed method and to compare it with the profile least squares method. A real dataset is analyzed for illustration.  相似文献   

5.
Efficiency of a Liu-type estimator in semiparametric regression models   总被引:1,自引:0,他引:1  
In this paper we consider the semiparametric regression model, y=Xβ+f+ε. Recently, Hu [11] proposed ridge regression estimator in a semiparametric regression model. We introduce a Liu-type (combined ridge-Stein) estimator (LTE) in a semiparametric regression model. Firstly, Liu-type estimators of both β and f are attained without a restrained design matrix. Secondly, the LTE estimator of β is compared with the two-step estimator in terms of the mean square error. We describe the almost unbiased Liu-type estimator in semiparametric regression models. The almost unbiased Liu-type estimator is compared with the Liu-type estimator in terms of the mean squared error matrix. A numerical example is provided to show the performance of the estimators.  相似文献   

6.
In this article we study a semiparametric generalized partially linear model when the covariates are missing at random. We propose combining local linear regression with the local quasilikelihood technique and weighted estimating equation to estimate the parameters and nonparameters when the missing probability is known or unknown. We establish normality of the estimators of the parameter and asymptotic expansion for the estimators of the nonparametric part. We apply the proposed models and methods to a study of the relation between virologic and immunologic responses in AIDS clinical trials, in which virologic response is classified into binary variables. We also give simulation results to illustrate our approach.  相似文献   

7.
We consider a panel data semiparametric partially linear regression model with an unknown parameter vector for the linear parametric component, an unknown nonparametric function for the nonlinear component, and a one-way error component structure which allows unequal error variances (referred to as heteroscedasticity). We develop procedures to detect heteroscedasticity and one-way error component structure, and propose a weighted semiparametric least squares estimator (WSLSE) of the parametric component in the presence of heteroscedasticity and/or one-way error component structure. This WSLSE is asymptotically more efficient than the usual semiparametric least squares estimator considered in the literature. The asymptotic properties of the WSLSE are derived. The nonparametric component of the model is estimated by the local polynomial method. Some simulations are conducted to demonstrate the finite sample performances of the proposed testing and estimation procedures. An example of application on a set of panel data of medical expenditures in Australia is also illustrated.  相似文献   

8.
In this article, we consider a semiparametric zero-inflated Poisson mixed model that postulates a possible nonlinear relationship between the natural logarithm of the mean of the counts and a particular covariate in the longitudinal studies. A penalized log-likelihood function is proposed and Monte Carlo expectation-maximization algorithm is used to derive the estimates. Under some mild conditions, we establish the consistency and asymptotic normality of the resulting estimators. Simulation studies are carried out to investigate the finite sample performance of the proposed method. For illustration purposes, the method is applied to a data set from a pharmaceutical company where the variable of interest is the number of episodes of side effects after the patient has taken the treatments.  相似文献   

9.
The censored single-index model provides a flexible way for modelling the association between a response and a set of predictor variables when the response variable is randomly censored and the link function is unknown. It presents a technique for “dimension reduction” in semiparametric censored regression models and generalizes the existing accelerated failure time models for survival analysis. This paper proposes two methods for estimation of single-index models with randomly censored samples. We first transform the censored data into synthetic data or pseudo-responses unbiasedly, then obtain estimates of the index coefficients by the rOPG or rMAVE procedures of Xia (2006) [1]. Finally, we estimate the unknown nonparametric link function using techniques for univariate censored nonparametric regression. The estimators for the index coefficients are shown to be root-n consistent and asymptotically normal. In addition, the estimator for the unknown regression function is a local linear kernel regression estimator and can be estimated with the same efficiency as the parameters are known. Monte Carlo simulations are conducted to illustrate the proposed methodologies.  相似文献   

10.
Double-sampling designs are commonly used in real applications when it is infeasible to collect exact measurements on all variables of interest. Two samples, a primary sample on proxy measures and a validation subsample on exact measures, are available in these designs. We assume that the validation sample is drawn from the primary sample by the Bernoulli sampling with equal selection probability. An empirical likelihood based approach is proposed to estimate the parameters of interest. By allowing the number of constraints to grow as the sample size goes to infinity, the resulting maximum empirical likelihood estimator is asymptotically normal and its limiting variance-covariance matrix reaches the semiparametric efficiency bound. Moreover, the Wilks-type result of convergence to chi-squared distribution for the empirical likelihood ratio based test is established. Some simulation studies are carried out to assess the finite sample performances of the new approach.  相似文献   

11.
There is a recent interest in developing new statistical methods to predict time series by taking into account a continuous set of past values as predictors. In this functional time series prediction approach, we propose a functional version of the partial linear model that allows both to consider additional covariates and to use a continuous path in the past to predict future values of the process. The aim of this paper is to present this model, to construct some estimates and to look at their properties both from a theoretical point of view by means of asymptotic results and from a practical perspective by treating some real data sets. Although the literature on the use of parametric or nonparametric functional modeling is growing, as far as we know, this is the first paper on semiparametric functional modeling for the prediction of time series.  相似文献   

12.
The censored linear regression model, also referred to as the accelerated failure time (AFT) model when the logarithm of the survival time is used as the response variable, is widely seen as an alternative to the popular Cox model when the assumption of proportional hazards is questionable. Buckley and James [Linear regression with censored data, Biometrika 66 (1979) 429-436] extended the least squares estimator to the semiparametric censored linear regression model in which the error distribution is completely unspecified. The Buckley-James estimator performs well in many simulation studies and examples. The direct interpretation of the AFT model is also more attractive than the Cox model, as Cox has pointed out, in practical situations. However, the application of the Buckley-James estimation was limited in practice mainly due to its illusive variance. In this paper, we use the empirical likelihood method to derive a new test and confidence interval based on the Buckley-James estimator of the regression coefficient. A standard chi-square distribution is used to calculate the P-value and the confidence interval. The proposed empirical likelihood method does not involve variance estimation. It also shows much better small sample performance than some existing methods in our simulation studies.  相似文献   

13.
Parallel to Cox's [JRSS B34 (1972) 187-230] proportional hazards model, generalized logistic models have been discussed by Anderson [Bull. Int. Statist. Inst. 48 (1979) 35-53] and others. The essential assumption is that the two densities ratio has a known parametric form. A nice property of this model is that it naturally relates to the logistic regression model for categorical data. In astronomic, demographic, epidemiological, and other studies the variable of interest is often truncated by an associated variable. This paper studies generalized logistic models for the two-sample truncated data problem, where the two lifetime densities ratio is assumed to have the form exp{α+φ(x;β)}. Here φ is a known function of x and β, and the baseline density is unspecified. We develop a semiparametric maximum likelihood method for the case where the two samples have a common truncation distribution. It is shown that inferences for β do not depend the nonparametric components. We also derive an iterative algorithm to maximize the semiparametric likelihood for the general case where different truncation distributions are allowed. We further discuss how to check goodness of fit of the generalized logistic model. The developed methods are illustrated and evaluated using both simulated and real data.  相似文献   

14.
This paper focuses on the variable selections for semiparametric varying coefficient partially linear models when the covariates in the parametric and nonparametric components are all measured with errors. A bias-corrected variable selection procedure is proposed by combining basis function approximations with shrinkage estimations. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the regularized estimators are established. A simulation study and a real data application are undertaken to evaluate the finite sample performance of the proposed method.  相似文献   

15.
M-estimation is a widely used technique for statistical inference. In this paper, we study properties of ordinary and weighted M-estimators for semiparametric models, especially when there exist parameters that cannot be estimated at the convergence rate. Results on consistency, rates of convergence for all parameters, and consistency and asymptotic normality for the Euclidean parameters are provided. These results, together with a generic paradigm for studying semiparametric M-estimators, provide a valuable extension to previous related research on semiparametric maximum-likelihood estimators (MLEs). Although penalized M-estimation does not in general fit in the framework we discuss here, it is shown for a great variety of models that many of the forgoing results still hold, including the consistency and asymptotic normality of the Euclidean parameters. For semiparametric M-estimators that are not likelihood based, general inference procedures for the Euclidean parameters have not previously been developed. We demonstrate that our paradigm leads naturally to verification of the validity of the weighted bootstrap in this setting. For illustration, several examples are investigated in detail. The new M-estimation framework and accompanying weighted bootstrap technique shed light on a universal way of investigating semiparametric models.  相似文献   

16.
It is of considerable interest to test for heteroscedasticity in statistical studies. In this paper, we investigate such a problem under the framework of a semiparametric mixed model. A score test is proposed for the hypothesis that all the variance components are zero. We establish the asymptotic property of the test, and examine its performance in a simulation study. The test is illustrated with the analysis of a longitudinal study of measurements of serum creatinine.  相似文献   

17.
We present methods to handle error-in-variables models. Kernel-based likelihood score estimating equation methods are developed for estimating conditional density parameters. In particular, a semiparametric likelihood method is proposed for sufficiently using the information in the data. The asymptotic distribution theory is derived. Small sample simulations and a real data set are used to illustrate the proposed estimation methods.  相似文献   

18.
Semiparametric models to describe the functional relationship between k groups of observations are broadly applied in statistical analysis, ranging from nonparametric ANOVA to proportional hazard (ph) rate models in survival analysis. In this paper we deal with the empirical assessment of the validity of such a model, which will be denoted as a “structural relationship model”. To this end Hadamard differentiability of a suitable goodness-of-fit measure in the k-sample case is proved. This yields asymptotic limit laws which are applied to construct tests for various semiparametric models, including the Cox ph model. Two types of asymptotics are obtained, first when the hypothesis of the semiparametric model under investigation holds true, and second for the case when a fixed alternative is present. The latter result can be used to validate the presence of a semiparametric model instead of simply checking the null hypothesis “the model holds true”. Finally, various bootstrap approximations are numerically investigated and a data example is analyzed.  相似文献   

19.
The empirical likelihood method is especially useful for constructing confidence intervals or regions of parameters of interest. Yet, the technique cannot be directly applied to partially linear single-index models for longitudinal data due to the within-subject correlation. In this paper, a bias-corrected block empirical likelihood (BCBEL) method is suggested to study the models by accounting for the within-subject correlation. BCBEL shares some desired features: unlike any normal approximation based method for confidence region, the estimation of parameters with the iterative algorithm is avoided and a consistent estimator of the asymptotic covariance matrix is not needed. Because of bias correction, the BCBEL ratio is asymptotically chi-squared, and hence it can be directly used to construct confidence regions of the parameters without any extra Monte Carlo approximation that is needed when bias correction is not applied. The proposed method can naturally be applied to deal with pure single-index models and partially linear models for longitudinal data. Some simulation studies are carried out and an example in epidemiology is given for illustration.  相似文献   

20.
Partially linear regression models with fixed effects are useful tools for making econometric analyses and normalizing microarray data. Baltagi and Li (2002) [7] proposed a computation friendly difference-based series estimation (DSE) for them. We show that the DSE is not asymptotically efficient in most cases and further propose a weighted difference-based series estimation (WDSE). The weights in it do not involve any unknown parameters. The asymptotic properties of the resulting estimators are established for both balanced and unbalanced cases, and it is shown that they achieve a semiparametric efficient boundary. Additionally, we propose a variable selection procedure for identifying significant covariates in the parametric part of the semiparametric fixed-effects regression model. The method is based on a combination of the nonconcave penalization (Fan and Li, 2001 [13]) and weighted difference-based series estimation techniques. The resulting estimators have the oracle property; that is, they can correctly identify the true model as if the true model (the subset of variables with nonvanishing coefficients) were known in advance. Simulation studies are conducted and an application is given to demonstrate the finite sample performance of the proposed procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号