首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
In this paper, we consider the initial-boundary value problem of the two-species chemotaxis Keller-Segel model
$$\begin{aligned} \textstyle\begin{cases} u_{t}=\Delta u-\chi_{1}\nabla \cdot (u\nabla w), &x\in \varOmega , \ t>0, \\ v_{t}=\Delta v-\chi_{2}\nabla \cdot (v\nabla w), &x\in \varOmega , \ t>0, \\ 0=\Delta w-\gamma w+\alpha_{1}u+\alpha_{2}v, &x\in \varOmega , \ t>0, \end{cases}\displaystyle \end{aligned}$$
where the parameters \(\chi_{1}\), \(\chi_{2}\), \(\alpha_{1}\), \(\alpha_{2}\), \(\gamma \) are positive constants, \(\varOmega \subset \mathbb{R}^{2}\) is a bounded domain with smooth boundary. We obtain the results for finite time blow-up and global bounded as follows: (1) For any fixed \(x_{0}\in \varOmega \), if \(\chi_{1}\alpha_{2}= \chi_{2}\alpha_{1}\), \(\int_{\varOmega }(u_{0}+v_{0})|x-x_{0}|^{2}dx\) is sufficiently small, and \(\int_{\varOmega }(u_{0}+v_{0})dx>\frac{8\pi ( \chi_{1}\alpha_{1}+\chi_{2}\alpha_{2})}{\chi_{1}\alpha_{1}\chi_{2} \alpha_{2}}\), then the nonradial solution of the two-species Keller-Segel model blows up in finite time. Moreover, if \(\varOmega \) is a convex domain, we find a lower bound for the blow-up time; (2) If \(\|u_{0}\|_{L^{1}(\varOmega )}\) and \(\|v_{0}\|_{L^{1}( \varOmega )}\) lie below some thresholds, respectively, then the solution exists globally and remains bounded.
  相似文献   

2.
Let \(\alpha ,\beta \) be orientation-preserving diffeomorphism (shifts) of \(\mathbb {R}_+=(0,\infty )\) onto itself with the only fixed points \(0\) and \(\infty \) and \(U_\alpha ,U_\beta \) be the isometric shift operators on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f=(\alpha ')^{1/p}(f\circ \alpha )\), \(U_\beta f=(\beta ')^{1/p}(f\circ \beta )\), and \(P_2^\pm =(I\pm S_2)/2\) where
$$\begin{aligned} (S_2 f)(t):=\frac{1}{\pi i}\int \limits _0^\infty \left( \frac{t}{\tau }\right) ^{1/2-1/p}\frac{f(\tau )}{\tau -t}\,d\tau , \quad t\in \mathbb {R}_+, \end{aligned}$$
is the weighted Cauchy singular integral operator. We prove that if \(\alpha ',\beta '\) and \(c,d\) are continuous on \(\mathbb {R}_+\) and slowly oscillating at \(0\) and \(\infty \), and
$$\begin{aligned} \limsup _{t\rightarrow s}|c(t)|<1, \quad \limsup _{t\rightarrow s}|d(t)|<1, \quad s\in \{0,\infty \}, \end{aligned}$$
then the operator \((I-cU_\alpha )P_2^++(I-dU_\beta )P_2^-\) is Fredholm on \(L^p(\mathbb {R}_+)\) and its index is equal to zero. Moreover, its regularizers are described.
  相似文献   

3.
We prove the existence of positive \(\omega \)-periodic solutions for the double-delayed differential equation
$$\begin{aligned} x^{\prime }(t)-a(t)g(x(t))x(t)=-\lambda (b(t)f(x(t-\tau (t))+c(t)h(x(t-\nu (t))), \end{aligned}$$
where \(\lambda \) is a positive parameter, \(a,b,c,\tau ,\nu \in C(\mathbb {R}, \mathbb {R})\) are \(\omega \)-periodic functions with \(a,b\ge 0,a,b\not \equiv 0,f,g,h\in C([0,\infty ),\mathbb {R})\) with \(g>0\) on \((0,\infty ),\) \(\ h\) is bounded, f is either superlinear or sublinear at \(\infty \) and could change sign.
  相似文献   

4.
Let \(\Omega \subset \mathbb {R}^\nu \), \(\nu \ge 2\), be a \(C^{1,1}\) domain whose boundary \(\partial \Omega \) is either compact or behaves suitably at infinity. For \(p\in (1,\infty )\) and \(\alpha >0\), define
$$\begin{aligned} \Lambda (\Omega ,p,\alpha ):=\inf _{\begin{array}{c} u\in W^{1,p}(\Omega )\\ u\not \equiv 0 \end{array}}\dfrac{\displaystyle \int _\Omega |\nabla u|^p \mathrm {d} x - \alpha \displaystyle \int _{\partial \Omega } |u|^p\mathrm {d}\sigma }{\displaystyle \int _\Omega |u|^p\mathrm {d} x}, \end{aligned}$$
where \(\mathrm {d}\sigma \) is the surface measure on \(\partial \Omega \). We show the asymptotics
$$\begin{aligned} \Lambda (\Omega ,p,\alpha )=-(p-1)\alpha ^{\frac{p}{p-1}} - (\nu -1)H_\mathrm {max}\, \alpha + o(\alpha ), \quad \alpha \rightarrow +\infty , \end{aligned}$$
where \(H_\mathrm {max}\) is the maximum mean curvature of \(\partial \Omega \). The asymptotic behavior of the associated minimizers is discussed as well. The estimate is then applied to the study of the best constant in a boundary trace theorem for expanding domains, to the norm estimate for extension operators and to related isoperimetric inequalities.
  相似文献   

5.
For a real-valued continuous function f(x) on \([0,\infty )\), we define
$$\begin{aligned} s(x)=\int _{0}^{x} f(u)du\quad \text {and}\quad \sigma _{\alpha } (x)= \int _{0}^{x}\left( 1-\frac{u}{x}\right) ^{\alpha }f(u)du \end{aligned}$$
for \(x>0\). We say that \(\int _{0}^{\infty } f(u)du\) is \((C, \alpha )\) integrable to L for some \(\alpha >-1\) if the limit \(\lim _{x \rightarrow \infty } \sigma _{\alpha } (x)=L\) exists. It is known that \(\lim _{x \rightarrow \infty } s(x) =L\) implies \(\lim _{x \rightarrow \infty }\sigma _{\alpha } (x) =L\) for all \(\alpha >-1\). The aim of this paper is twofold. First, we introduce some new Tauberian conditions for the \((C, \alpha )\) integrability method under which the converse implication is satisfied, and improve classical Tauberian theorems for the \((C,\alpha )\) integrability method. Next we give short proofs of some classical Tauberian theorems as special cases of some of our results.
  相似文献   

6.
Taking any \(p > 1\), we consider the asymptotically p-linear problem
$$\begin{aligned} \left\{ \begin{array}{ll} - {{\mathrm{div}}}(a(x,u,\nabla u)) + A_t(x,u,\nabla u)\ = \ \lambda ^\infty |u|^{p-2}u + g^\infty (x,u) &{}\quad \hbox {in}\;\Omega ,\\ u\ = \ 0 &{}\quad \hbox {on}\;\partial \Omega , \end{array} \right. \end{aligned}$$
where \(\Omega \) is a bounded domain in \(\mathbb R^N\), \(N\ge 2\), \(A(x,t,\xi )\) is a real function on \(\Omega \times \mathbb R\times \mathbb R^N\) which grows with power p with respect to \(\xi \) and has partial derivatives \(A_t(x,t,\xi ) = \frac{\partial A}{\partial t}(x,t,\xi )\), \(a(x,t,\xi ) = \nabla _\xi A(x,t,\xi )\). If \(A(x,t,\xi ) \rightarrow A^\infty (x,t)\) and \(\frac{g^\infty (x,t)}{|t|^{p-1}} \rightarrow 0\) as \(|t| \rightarrow +\infty \), suitable assumptions, variational methods and either the cohomological index theory or its related pseudo-index one, allow us to prove the existence of multiple nontrivial bounded solutions in the non-resonant case, i.e. if \(\lambda ^\infty \) is not an eigenvalue of the operator associated to \(\nabla _\xi A^\infty (x,\xi )\). In particular, while in [14] the model problem \(A(x,t,\xi ) = \mathcal{A}(x,t) |\xi |^p\) with \(p > N\) is studied, here our goal is twofold: extending such results not only to a more general family of functions \(A(x,t,\xi )\), but also to the more difficult case \(1 < p \le N\).
  相似文献   

7.
We establish the linear independence of time-frequency translates for functions \(f\) on \(\mathbb {R}^d\) having one-sided decay \(\lim _{x \in H,\ |x|\rightarrow \infty } |f(x)| e^{c|x| \log |x|} = 0\) for all \(c>0\), which do not vanish on an affine half-space \(H \subset \mathbb {R}^d\).  相似文献   

8.
We construct Peano curves \(\gamma : [0,\infty ) \rightarrow \mathbb {R}^2\) whose “footprints” \(\gamma ([0,t])\), \(t>0\), have \(C^\infty \) boundaries and are tangent to a common continuous line field on the punctured plane \(\mathbb {R}^2 {\backslash }\{\gamma (0)\}\). Moreover, these boundaries can be taken \(C^\infty \)-close to any prescribed smooth family of nested smooth Jordan curves contracting to a point.  相似文献   

9.
Let \(\Omega := ( a,b ) \subset \mathbb {R}\), \(m\in L^{1} ( \Omega ) \) and \(\phi :\mathbb {R\rightarrow R}\) be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form
$$\begin{aligned} \left\{ \begin{array} [c]{ll} -\phi ( u^{\prime } ) ^{\prime }=m ( x ) f ( u) &{}\quad \text {in } \Omega ,\\ u=0 &{}\quad \text {on } \partial \Omega , \end{array} \right. \end{aligned}$$
where \(f: [ 0,\infty ) \rightarrow [ 0,\infty ) \) is a continuous function which is, roughly speaking, superlinear with respect to \(\phi \). Our approach combines the Guo-Krasnoselski? fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case \(m\ge 0\).
  相似文献   

10.
In this paper, we study the harmonic equation involving subcritical exponent \((P_{\varepsilon })\): \( \Delta u = 0 \), in \(\mathbb {B}^n\) and \(\displaystyle \frac{\partial u}{\partial \nu } + \displaystyle \frac{n-2}{2}u = \displaystyle \frac{n-2}{2} K u^{\frac{n}{n-2}-\varepsilon }\) on \( \mathbb {S}^{n-1}\) where \(\mathbb {B}^n \) is the unit ball in \(\mathbb {R}^n\), \(n\ge 5\) with Euclidean metric \(g_0\), \(\partial \mathbb {B}^n = \mathbb {S}^{n-1}\) is its boundary, K is a function on \(\mathbb {S}^{n-1}\) and \(\varepsilon \) is a small positive parameter. We construct solutions of the subcritical equation \((P_{\varepsilon })\) which blow up at two different critical points of K. Furthermore, we construct solutions of \((P_{\varepsilon })\) which have two bubbles and blow up at the same critical point of K.  相似文献   

11.
Given a Lévy process \(\xi \), we find necessary and sufficient conditions for almost sure finiteness of the perpetual integral \(\int _0^\infty f(\xi _s)\hbox {d}s\), where \(f\) is a positive locally integrable function. If \(\mu =\mathbb {E}[\xi _1]\in (0,\infty )\) and \(\xi \) has local times we prove the 0–1 law
$$\begin{aligned} \mathbb {P}\Big (\int _0^\infty f(\xi _s)\,\hbox {d}s<\infty \Big )\in \{0,1\} \end{aligned}$$
with the exact characterization
$$\begin{aligned} \mathbb {P}\Big (\int _0^\infty f(\xi _s)\,\hbox {d}s<\infty \Big )=0\qquad \Longleftrightarrow \qquad \int ^\infty f(x)\,\hbox {d}x=\infty . \end{aligned}$$
The proof uses spatially stationary Lévy processes, local time calculations, Jeulin’s lemma and the Hewitt–Savage 0–1 law.
  相似文献   

12.
For \(p\in [1,\infty ]\), we establish criteria for the one-sided invertibility of binomial discrete difference operators \({{\mathcal {A}}}=aI-bV\) on the space \(l^p=l^p(\mathbb {Z})\), where \(a,b\in l^\infty \), I is the identity operator and the isometric shift operator V is given on functions \(f\in l^p\) by \((Vf)(n)=f(n+1)\) for all \(n\in \mathbb {Z}\). Applying these criteria, we obtain criteria for the one-sided invertibility of binomial functional operators \(A=aI-bU_\alpha \) on the Lebesgue space \(L^p(\mathbb {R}_+)\) for every \(p\in [1,\infty ]\), where \(a,b\in L^\infty (\mathbb {R}_+)\), \(\alpha \) is an orientation-preserving bi-Lipschitz homeomorphism of \([0,+\infty ]\) onto itself with only two fixed points 0 and \(\infty \), and \(U_\alpha \) is the isometric weighted shift operator on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f= (\alpha ^\prime )^{1/p}(f\circ \alpha )\). Applications of binomial discrete operators to interpolation theory are given.  相似文献   

13.
This paper is concerned with the following Kirchhoff-type equation
$$\begin{aligned} -\left( a+b\int _{\mathbb {R}^3}|\nabla {u}|^2\mathrm {d}x\right) \triangle u+V(x)u=f(x, u), \quad x\in \mathbb {R}^{3}, \end{aligned}$$
where \(V\in \mathcal {C}(\mathbb {R}^{3}, (0,\infty ))\), \(f\in \mathcal {C}({\mathbb {R}}^{3}\times \mathbb {R}, \mathbb {R})\), V(x) and f(xt) are periodic or asymptotically periodic in x. Using weaker assumptions \(\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s)\mathrm {d}s}{|t|^3}=\infty \) uniformly in \(x\in \mathbb {R}^3\) and
$$\begin{aligned}&\left[ \frac{f(x,\tau )}{\tau ^3}-\frac{f(x,t\tau )}{(t\tau )^3} \right] \mathrm {sign}(1-t) +\theta _0V(x)\frac{|1-t^2|}{(t\tau )^2}\ge 0, \quad \\&\quad \forall x\in \mathbb {R}^3,\ t>0, \ \tau \ne 0 \end{aligned}$$
with a constant \(\theta _0\in (0,1)\), instead of the common assumption \(\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s)\mathrm {d}s}{|t|^4}=\infty \) uniformly in \(x\in \mathbb {R}^3\) and the usual Nehari-type monotonic condition on \(f(x,t)/|t|^3\), we establish the existence of Nehari-type ground state solutions of the above problem, which generalizes and improves the recent results of Qin et al. (Comput Math Appl 71:1524–1536, 2016) and Zhang and Zhang (J Math Anal Appl 423:1671–1692, 2015). In particular, our results unify asymptotically cubic and super-cubic nonlinearities.
  相似文献   

14.
In this paper we study perturbed Ornstein–Uhlenbeck operators
$$\begin{aligned} \left[ \mathcal {L}_{\infty } v\right] (x)=A\triangle v(x) + \left\langle Sx,\nabla v(x)\right\rangle -B v(x),\,x\in \mathbb {R}^d,\,d\geqslant 2, \end{aligned}$$
for simultaneously diagonalizable matrices \(A,B\in \mathbb {C}^{N,N}\). The unbounded drift term is defined by a skew-symmetric matrix \(S\in \mathbb {R}^{d,d}\). Differential operators of this form appear when investigating rotating waves in time-dependent reaction diffusion systems. We prove under certain conditions that the maximal domain \(\mathcal {D}(A_p)\) of the generator \(A_p\) belonging to the Ornstein–Uhlenbeck semigroup coincides with the domain of \(\mathcal {L}_{\infty }\) in \(L^p(\mathbb {R}^d,\mathbb {C}^N)\) given by
$$\begin{aligned} \mathcal {D}^p_{\mathrm {loc}}(\mathcal {L}_0)=\left\{ v\in W^{2,p}_{\mathrm {loc}}\cap L^p\mid A\triangle v + \left\langle S\cdot ,\nabla v\right\rangle \in L^p\right\} ,\,1<p<\infty . \end{aligned}$$
One key assumption is a new \(L^p\)-dissipativity condition
$$\begin{aligned} |z|^2\mathrm {Re}\,\left\langle w,Aw\right\rangle + (p-2)\mathrm {Re}\,\left\langle w,z\right\rangle \mathrm {Re}\,\left\langle z,Aw\right\rangle \geqslant \gamma _A |z|^2|w|^2\;\forall \,z,w\in \mathbb {C}^N \end{aligned}$$
for some \(\gamma _A>0\). The proof utilizes the following ingredients. First we show the closedness of \(\mathcal {L}_{\infty }\) in \(L^p\) and derive \(L^p\)-resolvent estimates for \(\mathcal {L}_{\infty }\). Then we prove that the Schwartz space is a core of \(A_p\) and apply an \(L^p\)-solvability result of the resolvent equation for \(A_p\). In addition, we derive \(W^{1,p}\)-resolvent estimates. Our results may be considered as extensions of earlier works by Metafune, Pallara and Vespri to the vector-valued complex case.
  相似文献   

15.
Let m be a positive integer \(\ge \)3 and \(\lambda =2\cos \frac{\pi }{m}\). The Hecke group \(\mathfrak {G}(\lambda )\) is generated by the fractional linear transformations \(\tau + \lambda \) and \(-\frac{1}{\tau }\) for \(\tau \) in the upper half plane \(\mathbb H\) of the complex plane \(\mathbb C\). We consider a set of functions \(\mathfrak {f}_0, \mathfrak {f}_i\) and \(\mathfrak {f}_{\infty }\) automorphic with respect to \(\mathfrak {G}(\lambda )\), constructed from the conformal mapping of the fundamental domain of \(\mathfrak {G}(\lambda )\) to the upper half plane \(\mathbb H\), and establish their connection with the Legendre functions and a class of hyper-elliptic functions. Many well-known classical identities associated with the cases of \(\lambda =1\) and 2 are preserved. As an application, we will establish a set of identities expressing the reciprocal of \(\pi \) in terms of the hypergeometric series.  相似文献   

16.
In this paper we consider the following nonhomogeneous semilinear fractional Laplacian problem
$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s u+u=\lambda (f(x,u)+h(x)) \,\, \text {in}\,\, \mathbb {R}^N,\\ u\in H^s(\mathbb {R}^N), u>0\,\, \text {in}\,\, \mathbb {R}^N, \end{array}\right. } \end{aligned}$$
where \(\lambda >0\) and \(\lim _{|x|\rightarrow \infty }f(x,u)=\overline{f}(u)\) uniformly on any compact subset of \([0,\infty )\). We prove that under suitable conditions on f and h, there exists \(0<\lambda ^*<+\infty \) such that the problem has at least two positive solutions if \(\lambda \in (0,\lambda ^*)\), a unique positive solution if \(\lambda =\lambda ^*\), and no solution if \(\lambda >\lambda ^*\). We also obtain the bifurcation of positive solutions for the problem at \((\lambda ^*,u^*)\) and further analyse the set of positive solutions.
  相似文献   

17.
In this paper we consider the compactness of \(\beta \)-symplectic critical surfaces in a Kähler surface. Let M be a compact Kähler surface and \(\Sigma _i\subset M\) be a sequence of closed \(\beta _i\)-symplectic critical surfaces with \(\beta _i\rightarrow \beta _0\in (0,\infty )\). Suppose the quantity \(\int _{\Sigma _i}\frac{1}{\cos ^q\alpha _i}d\mu _i\) (for some \(q>4\)) and the genus of \(\Sigma _{i}\) are bounded, then there exists a finite set of points \({{\mathcal {S}}}\subset M\) and a subsequence \(\Sigma _{i'}\) which converges uniformly in the \(C^l\) topology (for any \(l<\infty \)) on compact subsets of \(M\backslash {{\mathcal {S}}}\) to a \(\beta _0\)-symplectic critical surface \(\Sigma \subset M\), each connected component of \(\Sigma \setminus {{\mathcal {S}}}\) can be extended smoothly across \({{\mathcal {S}}}\).  相似文献   

18.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

19.
For \(k,m,n\in {\mathbb {N}}\), we consider \(n^k\times n^k\) random matrices of the form
$$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$
where \(\tau _{\alpha }\), \(\alpha \in [m]\), are real numbers and \({\mathbf {y}}_\alpha ^{(j)}\), \(\alpha \in [m]\), \(j\in [k]\), are i.i.d. copies of a normalized isotropic random vector \({\mathbf {y}}\in {\mathbb {R}}^n\). For every fixed \(k\ge 1\), if the Normalized Counting Measures of \(\{\tau _{\alpha }\}_{\alpha }\) converge weakly as \(m,n\rightarrow \infty \), \(m/n^k\rightarrow c\in [0,\infty )\) and \({\mathbf {y}}\) is a good vector in the sense of Definition 1.1, then the Normalized Counting Measures of eigenvalues of \({\mathcal {M}}_{n,m,k}({\mathbf {y}})\) converge weakly in probability to a nonrandom limit found in Marchenko and Pastur (Math USSR Sb 1:457–483, 1967). For \(k=2\), we define a subclass of good vectors \({\mathbf {y}}\) for which the centered linear eigenvalue statistics \(n^{-1/2}{{\mathrm{Tr}}}\varphi ({\mathcal {M}}_{n,m,2}({\mathbf {y}}))^\circ \) converge in distribution to a Gaussian random variable, i.e., the Central Limit Theorem is valid.
  相似文献   

20.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号