首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of R3V · THF (R  C6F5, CH2SiMe3) with one t-BuOH equivalent result in formation of unstable R2V(Ot-Bu)·THF, which disproportionates readily to VIV and VII compounds. The interaction of V(Ot-Bu)3 with Me3SiCH2Li in diethyl ether is accompanied by formation of the at-complex [Me3SiCH2V(Ot-Bu)3]-Li+ which decomposes with formation of (Me3SiCH2)2V(Ot-Bu)2 and [V(Ot-Bu)3]-Li+. As a result of exchange reaction of V(Ot-Bu)3 with one mole of RMgX, the complexes RV(Ot-Bu)2·XMgOt-Bu (R  Me, X  Br, R  CH2Ph, CH2SiMe3, C6F5, X  Cl) have been obtained. The insertion of carbon dioxide in vanadiumcarbon and vanadiumoxygen bonds has also been investigated.  相似文献   

2.
3.
The preparation and properties are described of trans-[(Ph3P)2(CO)M(RNSNR)] [ClO4] (M  RhI, IrI; R  Me, Et, i-Pr, t-Bu) and of cis- or trans-[L2Pt(RNSNR)X] [ClO4] (X  Cl?, L  Et2S, PhMe2As, PhMe2P, R  Me, t-Bu; X  CH3, L  PhMe2P, R  Me).1H and 13C NMR data show the existence of various isomers in solution which may interconvert via intra- and inter-molecular exchange processes. A general reaction scheme for the intramolecular exchange processes is discussed.  相似文献   

4.
The species FeRu3(CO)13(μ-PPH2)2, synthesized from Ru3(CO)12 and Fe(CO)4(Ph2PPPh2),has been characterized both spectroscopically and via a single-crystal X-ray structural analysis. This complex crystallizes in the centrosymmetric triclinic space group P1 [No. 2, Ci1] with a  10.066(3), b  12.899(3), c  17.003(4) Å, α  111.89(2), β  91.02(2), γ  102.00(2)°, V  1992.7(9) Å3, Z  2, ?(obsd)  1.79(2) g cm-3 and ?(calcd)  1.82 cm-3. Diffraction data were collected with a Syntex P21 automated four-circle diffractometer and the structure was refined to RF  6.0% and RWF  3.6% for all 5213 reflections (RF  3.8%, RWF  3.6% for those 4140 reflections with |Fo|> 3σ(|Fo|).The metal atoms define a planar triangulated rhombus, with atoms Ru(1) and Ru(2) at the bridgehead, and Fe(1) and Ru(3) at the acute apices. Fe(1) is linked to four terminal carbonyl ligands and is associated with the heteronuclear bonds Fe(1)Ru(1)  2.861(1) Å and Fe(1)Ru(2)  2.868(1) Å. The ruthenium atoms are each bonded to three terminal carbonyl groups. The retheniumruthenium distances are Ru(1)Ru(2)  3.098(1), Ru(1)Ru(3)  3.147(1), and Ru(2)Ru(3)  3.171(1) Å. The structure is completed by Ph2P bridges across the Ru(1)Ru(3) and Ru(2)(ru(3) vectors (<Ru(1)P(1)Ru(3)  84.89(5)° and <Ru(2)P(2)Ru(3)  85.56(6)°).  相似文献   

5.
Alkynylnickel complexes trans-C6Cl5Ni(PPhMe2)2CCR (IIIa, R  H; IIIb, R  Me; IIIc, R  Et; IIId, R  CH2OH; IIIe, R  CH2CH2OH; IIIf, R  Ph; IIIg, R  C6H4OMe-p) have been prepared from trans-[C6Cl5Ni-(PPhMe2)2L]ClO4 and monosubstituted acetylenes in the presence of triethylamine, and their reactions with alcohols in the presence of perchloric acid were studied. Complexes IIIa and IIIe afforded alkoxycarbene complexes trans-[C6Cl5Ni-(PPhMe2)2{C(OR′)Me}]ClO4 (IVa, R′  Me; IVb, R′  Et; IVc, R′  n-Pr) or trans-C6Cl5Ni(PPhMe2)2{C(CH2)3O}]ClO4(IVd), respectively, but IIIb either decomposed or afforded trans-C6Cl5Ni(PPhMe2)2CHC(OMe)Me, depending on the amount of acid used. Treatment of IVaIVd with amines resulted in deprotonation to give α-alkoxyvinyl complexes, trans-C6Cl5Ni(PPhMe2)2C(OR′)CH2 (VIaVIc) or trans-C6Cl5Ni(PPhMe2)2CCHCH2CH2O (VId), the reaction being reversible. A 1H NMR study indicated: (i) that the carbene methyl and the vinyl protons IV or VI are D-exchangeable by MeOD without catalyst; (ii) that the basicity of VIa is comparable to those of amines; (iii) that the carbene complexes IVaIVc have two isomers due to hindered rotation about the C(carbene)O bond in solution, IVb existing in the Z-form in the solid state; (iv) that the rotationalbarriers (°G) about the C(carbene)O bond in IVb and the NiC-(carbene) bond in IVd are 20 (or more) and 11.7 kcal/mol, respectively. These results are explained in term of double bond character of the carbene carbon and its surrounding atoms.  相似文献   

6.
The crystal and molecular structure of hexaphenylditin selenide (C6H5)3SnSeSn(G6H5)3 was determined by X-ray diffraction data and was refined to R  0.055. The compound is monoclinic, space group P21, with a  9.950(4), b  18.650(7), c  18.066(6) Å, β  106.81(4)°, Z  4. The two molecules in the asymmetric unit differ slightly in their conformations, both having approximate C2 symmetry. Bond lengths and angles are: SnSe 2.526 (2.521(3) ? 2.538(3)) Å; SnC 2.138 (2.107(16)?2.168(19)) Å; SnSeSn 103.4(1)°, 105.2(1)°. There are only slight angular distortions at the SnSeC3 tetrahedra (SeSnC angles: 104.3(5)?114.8(4)°). The bond data indicate essentially single bonds around the Sn atoms.  相似文献   

7.
The 13P and 13C spectra of the triply 13C labelled molecules (CH3)3P, (CH3)3PO, (CH3)3PS and (CH3)3PSe oriented in a nematic phase are reported. The CPC bond angles have been measured. The 13P chemical shift tensor shows a large anisotropy except in the case of (CH3)3P. The abnormal large value observed for the PSe bond length suggests a large anisotropy of the 1J(PSe) spin coupling.  相似文献   

8.
Reactions of HgCl2 with η5-C5H5Fe(CO)2R (R  CH2CHCH2 and CH2C(CH3)CH2) in THF at 25°C rapidly afford 11 adducts of the two reactants. These adducts were converted to the corresponding PF6? salts, [η5-C5H5Fe(CO)22-CH2C(R)CH2HgCl)]+ PF6? (R  H and CH3), for characterization. Slower reactions with cleavage of the ironcarbon σ bond and elimination of the R group from η5-C5H5Fe(CO)2R occur for R  CH2CHC(CH3)2, CH2CHCHC6H5, and CH2CCC6H5. Both elimination and 11 adduct formation are observed when R  CH2CHCHCH3. The kinetics of the cleavage reactions are presented and possible mechanisms for both cleavage and 11 adduct formation are discussed.  相似文献   

9.
Bis(cycloocta-1,5-diene)platinum reacts with 2,3,4,5-tetraphenylfulvene to afford the complex [Pt(η2-CH2C5Ph4)(cod)] (cod  C8H12) in which the metal atom is coordinated to the exo-cyclic double bond of the fulvene. Related compounds [Pt(η2-CH2C5Ph4L2] (L  PPh3, PMePh2, PMe2Ph, AsPh3 or CNBut have also been prepared and characterised. Reaction of the complexes [Pt(C2H4)2(L)] (L  P(cyclo-C6H11)3, PPh3 or AsPh3) with 2,3,4,5-tetraphenylfulvene yields the compounds [Pt(C2H4)(η2-CH2C5PH4)(L)]. NMR data for the new species are reported and discussed. 6,6-Diphenylfulvene reacts with [Pt(cod)2] and PPh3 (12 mol ratio) to give the complex [Pt(η2-C5H4CPh2)-(PPh3)2] in which the metal atom is bonded to carbon atoms C(2) and C(3) of the fulvene ring. This was established by an X-ray diffraction study. Crystals are monoclinic, space group P21/n, with Z  4 in a unit cell of dimensions a  13.761(4), b  21.653(13), c  17.395(6) Å, β,  104.46(2)°. The structure has been solved and refined to R  0.064 (R′  0.064) for 3139 independent diffracted intensifies measured at room temperature. The platinum atom is in a trigonal environment formed by the two ligated phosphorus atoms and the CC bond of the fulvene which is elongated to 1.52(3) Å. The c5 fulvene ring is planar, and makes an angle of 108° with the coordination plane around the platinum. In this plane the metal atom is slightly asymmetrically bonded with PtC 2.15(2) and 2.24(2) Å, and PtP 2.280(6) and 2.301(6) Å.  相似文献   

10.
Co6C(CO)12S2 (I) has been isolated in crystalline form from the mixture of more than a dozen of carbonyl products formed when Co2(CO)8 reacts at room temperature with CS2. Crystals of I are monoclinic with space group Cc, and lattice constants a  16.250(5), b  9.413(4), c  16.036(5) Å, β  116.77(4)°. Structure refinement gave R  0.034 for 1974 reflections. The CCo6S2 core of the molecule possesses idealized D3h geometry. It is composed of a Co6 trigonal prism, enclosing a C atom in the centre, and the triangular faces are capped symmetrically by the two S atoms. The core contains two sorts od CoCo distances: short one (2.432 Å) along the triangular edges, and long ones (2.669 Å) along the lateral edges. The average CoC distance is 1.94 Å, and the average CoS distance 2.192 Å.13CO-enriched samples were prepared photochemically and their IR spectra used in the assignment of the CO stretching frequencies. The CO stretching force constant was calculated to be 1670(2) Nm-1.By the use of 13CS2, I has also been obtained in a selectively carbido-13C-labelled form. The vibrational frequencies of the carbide atom were observed, and that at 819 cm-1 (13C: 790 cm-1) assigned to the species
, and that at 548 cm-1 (13C: 535.5 cm-1) to species E′. For the Co-C(carbide) force constant a value of 155 Nm-1 was calculated. The cobalt—sulphur stretching frequencies were found at 309 cm-1 (
) and 239 cm-1 (E′). The CoS stretching force constant, 78 Nm-1, is considerably lower than that obtained for SCo3-(CO)9, viz. 112 Nm-1.  相似文献   

11.
The precise molecular structure of [PdCl(CH2SCH3)(PPh3)2] has been determined from three-dimensional X-ray diffraction data collected at ?160°C. The CH2Cl2 solvated crystal ([PdCl(CH2SCH3)(PPh3)2 · CH2Cl2]) belongs to the monoclinic system, space group P21/n, with four formula units in a cell of dimensions: a 14.973(3), b 15.333(3), c 17.377(3) Å and β 115.77(1)° at ?160°C. The structure was solved by the conventional heavy atom method and refined by the least-squares procedure to R = 0.035 for observed reflections. The geometry around the palladium atom is square-planar. The phosphorus atoms of the two triphenylphosphine ligands are mutually trans. The CH2SCH3 group is bonded to the palladium atom only through the PdC σ-bond and the sulfur atom is not bonded to the metal atom (PdC(1) 2.061(3), SC(1) 1.796(3), SC(2) 1.817(5), Pd?S 2.973(1) Å, PdC(1)S 100.64(14)° and C(1)SC(2) 101.28(18)°). The structure is in contrast to that of [PdCl(CH2SCH3)(PPh3)], in which both the carbon and sulfur atoms of the CH2SCH3 group are bonded to the palladium atom.  相似文献   

12.
Platinum(II) and palladium(II) complexes containing chelating acyl ligands have been synthesized from salicylaldehyde, 2-hydroxynaphthaldehyde and 2-hydroxy-3-methoxybenzaldehyde. The platinum(II) complexes [Pt(acyl)L2], acyl  OC6H4CO, OC10H6CO, O(m-CH3OC6H3CO), L  tertiary phosphine, 1/2 diphenylphosphinoethane, can be isolated with both monodentate and chelating diphosphines, whereas for palladium only the compounds with chelating phosphines are readily obtainable. The reactions of [Pt(OC6H4CO)L2] with HCl afford trans-[PtCl(OHC6H4CO)L2], L  monodentate tertiary phosphine and cis-[PtCl(OHC6H4CO)L2], L2  1,2-bis-diphenylphosphinoethane, in which the metal—carbon bond remains intact. The structure of [Pt(OC6H4CO)-(P(p-CH3C6H4)3)2] has been determined by X-ray diffraction methods and found to have the expected square planar structure. Some relevant bond lengths and angles are: PtP; 2.271(4) and 2.348(5) Å; PtC; 1.96(2) Å and PtO; 2.07(1) Å; PPtP  101°, CPtO  82°.  相似文献   

13.
Proton NMR data at 100 MHz are reported for thirteen para- and meta-substituted phenyltrimethyltin compounds, XC6H4Sn(CH3)3, where X = para-N(CH3)2, para-OCH3, para-OC2H5, para-CH3, meta-CH3, -H, para-F, meta-OCH3, para-Cl, para-Br, meta-F, meta-Cl and para-Sn(CH3)3. Correlation coefficients with Hammett σ-constants of greater than 0.95 are obtained with the methyltin proton chemical shifts and coupling constants to carbon [1J(13C1H)] and tin [2J(SnC1H)]. Solvent effects and other extraneous factors invalidate comparisons of ? values in terms of the relative attenuation of the transmission of substituent effects through homologous carbon, silicon, germanium and tin systems, but coupling constant data reflect a diminution of ca. one tenthfold per bond in the order ?[C(1)Sn] > ? [SnC] > ? [CH]. Satisfactory correlations (r > 0.95) are obtained in this series of closely-related compounds among the conventionally recorded two-bond, 2J(SnC1H) and the constituent, one-bond 1J (Sn13C) and J(13C1H) coupling constants, but the correlation coefficient for the comparison between the two one-bond couplings, 1J(Sn13C) and 1J(13C1H) is lower (r = 0.872). Changes in the couplings at the methyltin carbon bond tin-119 atoms are interpreted in terms of isovalent hybridization; a model based upon effective nuclear charges is tested with respect to both NMR coupling constants and 119Sn Mössbauer Isomer shifts at tin and is invalidated. Proton and carbon-13 NMR, chemical shift and coupling constant data are used to derive a Hammett σ-constant for the para-trimethyltin group of ?0.14, and the significance of this value is discussed.  相似文献   

14.
The products (μ-H)[μ-η2-(CH3)2CHNHCNCH(CH3)2]Os3(CO)10, I, and (μ-H)- [μ-η2-(CH3)2CHNHCO]Os3(CO)9[CNCH(CH3)2], II have been obtained from the reaction of H2Os3(CO)10 with diisopropylcarbodiimine. Both products have been investigated by infrared and 1H NMR spectroscopies, and by single crystal X-ray diffraction analyses. For I: Space group, P21/c, a12.840(4), b  15.724(4), c 12.638(4) Å, β 106.91(2)°, V  2441(2) Å3, Z4, ? calc  2.66 g/cc. For 2869 reflections, R  0.051 and Rw  0.052. I contains an N-hydrido, N-isopropylamidinyl ligand bridging one edge of a triangular cluster of three osmium atoms. It was apparently formed by the incorporation of one carbodiimide molecule into the coordination sphere of the cluster followed by the transfer of one hydride ligand to one of the nitrogen atoms. For II: Space group P2 1/n;a  13.936(7), b  12.146(2), c  15.509(6) Å, β  105.20(4)°, V  2533(3) Å, Z  4, ?calc  2.57 g/cc. For 3065 reflections, R  0.052 and Rw  0.057. II contains an N-hydrido, N-isopropylformamido ligand bridging one edge of a triangular cluster of three osmium atoms and an isopropylisocyanide ligand. The molecule appears to have been formed by the cleavage of an NCH(CH3)2 moeity from one carbodiimide molecule and the transfer of it together with one hydride ligand to the carbon atom of a carbonyl group. The resultant formamido ligand bridges an edge of the cluster. The remaining fragment of the carbodiimide molecule bonds to one of the metal atoms of the cluster as a terminal isocyanide ligand. When heated, I loses one mole of carbon monoxide and forms the new cluster complex (μ-H)[μ32-(CH3)2CHNHCNCH-(CH3)2]Os3(CO)9 III. On the basis of electron counting schemes, III is believed to contain a triply-bridging amidinyl ligand serving as a five electron donor. Most importantly, no II was formed from I indicating that it is not a precursor -to II. A mechanism for the formation of I and II is presented and discussed.  相似文献   

15.
The reaction of [Pt(PEt3)3] with CH2I2 affords trans-[Pt(CH2PEt3)I(PEt3)2]I and is believed to proceed via the α-functionalised alkyl cis-[Pt(CH2I)I(PEt3)2], because similar ylides are obtained from cis- or trans-[PT(CH2X)(PPh3)2X] (XCl, Br, or I) with PR3 (PEt3, PBu3n, PMePh2, PEtPh2, or PPh3); cis-[Pd(CH2I)-I(PPh3)2] does not react with excess PPh3, but with PEt3 yields trans-[Pd(CH2PEt3)I(PPh3)2]I; the X-ray structure of trans-[Pt(CH2PEt3)I(PEt3)2]I (current R = 0.045) shows PtP(1) 2.332(7), PtP(2) 2.341(8), PtC 2.08(2), and PtI 2.666(2) Å, and angles (a) C(1)PtI, P(1), P(2): 176.9(8), 91.6(6), 93.4(6), (b) IPtP(1), P(2): 87.1(2), 88.5(2), and (c) P(1)P(2), 166.8(3), and (d) PtC(1)P(3), 118(1)°.  相似文献   

16.
Copper(II) complexes of unsymmetrical bifunctional tetradentate azomethines having the general formulae, (OC10H6CH:NXN:C(R)C6H4O)Cu, (OC10H6CH:NXN:C(CH3)CHC(CH3)OCu, (OC6H4CH:NXN:C(CH3)C6H4O)Cu, (OC6H4C(R);NXN:C(CH3)CHC(CH3)O)Cu (where R = H or CH3, X = (CH2)3, (CH2)4, (CH2)6 or -oC6H4) have been synthesized by the reactions of preformed mixed imine complexes of the type, CuLL′ (where L and L′ are two different imines such as 2-hydroxy-1-naphthaldimine, salicylaldimine, o-hydroxyacetophenonimine or acetylacetonimine) with diamines such as 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane or o-phenylenediamine. These complexes have been characterized by elemental analyses, TLC, conductance, magnetic measurements, IR and electronic spectra.  相似文献   

17.
Several trans-hydridomethylbis(phosphine)-platinum(II) and -palladium(II) complexes have been made by the reaction: trans-M(H)Cl(PR3)2 + CH3MgBr → trans-M(CH3)(PR3)2 + MgClBr and their structures determined by 1H NMR and IR spectroscopy. The complexes in which M  Pt and R  Cy (cyclohexyl) or i-Pr (isopropyl) are very stable in the solid state and in solution, while the compounds in which M  Pt, R  Et (ethyl) and M  Pd, R  i-Pr slowly decompose either in the solid state or in solution. The compound in which M  Pd and R  Cy was not isolated but was identified in solution.  相似文献   

18.
Trimesitylgermylamine, Mes3GeNH2, prepared in high yield by the coupling of Mes3GeCl (Mes  2,4,6-Me3C6H2) with NaNH2 or LiNH2, has been fully characterized by 1H and 13C NMR, IR and mass spectrometry. It is a rare example of a stable primary germylamine, melting at 166°C, which is only slowly cleaved by H2O, CH3OH, HCl or phenol, indicating that the central Ge atom is protected from attack by the mesityl groups. Unlike other germylamines, Mes3GeNH2 reacts with tBuCOCl to give the N-substituted amide, Mes3GeNHCOtBu, rather than Mes3GeCl. Preliminary X-ray crystallographic analyses reveal that the Ge atom has approximate tetrahedral coordination with an average GeC bond length of 1.978(3) Å and a GeN bond length of 1.854(3) Å, and crowding around the Ge atom so that it is shielded from attack by approaching reactants.  相似文献   

19.
The electric dipole moments of the diaryl diselenides (RC6H4)2Se2 (R  H, 4-F, 4-Br, 4-CH3, 3-F) were measured in benzene solution at 25 and 45°C. The conformations of these compounds were deduced by matching experimental moments with values calculated for a variety of possible conformations. In the dissolved state the diselenides exist at 25°C in fixed “skew” conformations characterized by dihedral angles of 75–106° between the CSeSe planes, corresponding to the conformational energy minima. At 45°C oscillations about the SeSe bonds are excited in the diphenyl and bis(4-methylphenyl) diselenides, whereas the 4-bromophenyl derivative exhibits free rotation. The fluoro compounds have temperature-independent dipole moments, suggesting “rigid conformations” with dihedral angles of 106° (4-F) and 74.4° (3-F). An analysis of the dipole moments at 25 and 45°C obtained for the compounds (RC6H4)2X2 (R  H, 3-F, 4-F, 4-Br, 4-CH3; X  S, Se, Te) showed that the conformational properties of these derivatives change on passing from X  S to X  Te. The observed variations are explicable in terms of a decreasing repulsion between the lone electron pairs of the chalcogen atoms on going from the disulfides to the ditellurides and a concomitant reduction of the energy barrier to rotations about the XX bonds.  相似文献   

20.
A single-crystal X-ray diffraction study of tetracarbonyl-ferra-3-cyclopentene-2,5-dione has been made. Formally the compound can be derived from maleic anhydride by substitution of the bridging oxygen by Fe(CO)4. Accordingly the bonding character is similar to that of maleic anhydride. The ironcarbon distances in the ring indicate partial double bonds. The octahedrally coordinated iron atom is linked to four terminal carbon monoxide ligands, with a longer bond distance to the equatorial than to the axial ones (FeCax 1.809 Å, FeCeq 1.854 Å). The axial CO groups are strongly inclined towards the ring (CaxFeCax 164°). The latter effect is explained by electronic repulsion of the CO groups.IR, 1H NMR, and 13C NMR data are reported. Crystal data: space groupPnama:α  12.708(10),b  10.058(7),c  7.527(5) Å;Z  4. With 625 reflections [Fo > 3o(Fo)] the structure has been refined anisotropically (hydrogen isotropically) to R0.022.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号