首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The six- and seven-membered rhenacycloalkanes (OC)4RePR2OCH2XCH2 (R = CH3, CoH5; X = CH2, CH2CH2) are obtained by reaction of the binuclear anions [(OC)4RePR2O]22? with the alkanediylbis(triflouromethanesulfonates) X(CH2Y)2 (Y = CF3SO2O) in dimethoxyethane. In the Reσ bond of (OC)4RePPh2OCH2CH2CH2SO2 can be inserted under ring expansion. The rhenacycloheptanes (OC)4RPR2OCH2CH2CH2CH2 (R = CH3, CoH5) are thermally unstable and decompose by cleavage of the α-CC bond. The heterolytic cleavage of the ReRe bond in [(OC)4RePR2O]22? results in the open chain, ionic intermediate products [R2(O)PRe(CO)4CH2XCH2Y]?, which in competition with the cyclisation, are liable to a β-hydrogen transfer. The mechanisms which are responsible for the formation of the hdrido complexes [HRe(CO)4PR2O]? and HRe(CO)4PR2OCH2XCH3, are discussed.  相似文献   

2.
The binuclear anions Na2[(OC)4MPR2S]2 (M = Mn: R = CH3; M = Re: R = CH3, C6H5) are obtained by reduction of the thiophosphinous acid complexes (OC)4BrMPR2SH with sodium amalgam in dimethoxyethane. Only for M = Mn the metal-metal bond can be cleaved with excess sodium to give Na2[(CO)4MnP(CH3)2S]. With dimethyl sulfate and 1,3-dibromopropane both nucleophilic centers in Na2[(OC)4MnP(CH3)2S] react to give CH3Mn(CO)4P(CH3)2SCH3, and the six-membered, sulfur-containing metallacycle (OC)4MnP(CH3)2SCH2CH2CH2, respectively. The heterolytic cleavage of the ReRe bond in Na2[(OC)4RePR2S]2 with (CH3O)2SO2 leads to the methylated complexes CH3Re(CO)4PR2SCH3. The newly prepared compounds are characterized by their IR, NMR, and mass spectra.  相似文献   

3.
The novel λ4-thia-λ5-phospha-h2-manganabicyclo[2.2.1]heptadienes (OC)3Mn[CR2CR2CR2CR2PR12S] (R1 = CH3, C6H5; R2 = CO2CH3, CO2C2H5, CO2C6H11) are formed by action of the activated alkynes R2C  CR2 on the heterocycles [(OC)4MnPR12S]2 via the isolable, five-membered heterometallacyclopentadienes (OC)4MnSPR12C(R2)C(R2). The compound with R1 = CH3 and R2 = CO2CH3 crystallizes in the triclinic space group P1 with Z = 2 and separates quantitatively the thiophene derivative CR2CR2CR2CR2S under CO pressure or by reaction with (NH4)2Ce(NO3)6. The use of various acetylenes and of acetylenes with different alkyl groups yields the unsymmetric substituted manganabicycloheptadienes (OC)3Mn[CR4CR3CR2CR2P(CH3)2S] (R2 = CO2CH3, R3 = R4 = CO2C2H5; R2 = R4 = CO2CH3, R3 = H). With propionic acid methylester the alkyne insertion proceeds regiospecifically. With Raney nickel selective S elimination under ring contraction and formation of the λ4-phospha-h2-manganabicyclo[2.1.1]hexenes (OC)3Mn[CR2CR3CR2CR2PR12] (R1 = CH3: R2 = R3 = CO2CH3, CO2C2H5; R2 = CO2CH3, R3 = H; R1 = C6H5: R2 = R3 = CO2C2H5) occurs. (OC)3Mn[CR2CR3CR2CR2P(CH3)2] (R2 = R3 = CO2CH3) crystallizes in the monoclinic space group P21/m with Z = 2. The IR and NMR spectra of the heterocycles are discussed in detail.  相似文献   

4.
The platinacyclopentane derivative [Cl(CH2)3R2P](Cl)PtPR2CH2CH2CH2 is formed by action of Cl(CH2)3PR2 on Pt(COD)2 in n-hexane via the not isolable Pt[PR2(CH2)3Cl]2 (R  C6H11) by oxidative addition of a CCl bond to platinum. [μ-CIRh(CO)2]2 reacts in benzene with Cl(CH2)3PR2 under partially CO substitution to give the stable intermediate Cl(OC)Rh[PR2(CH2)3Cl]2. In boiling toluene oxidative addition of a CCl bond to rhodium occurs under formation of the phospharhodacyclopentane [CI(CH2)3R2P] Cl2(OC)-RhPR2CH2CH2CH2 (R  C6H5). The 31P{1H}-NMR spectra of the rhodium compound is characterized by an ABX system, that of the platinum by superposition of an ABX pattern with an AB spectrum.  相似文献   

5.
The amine substituted phosphines (C6H5)2PN(H)CH2CH3 and (C6H5)2PN(H)CH2C6H5 react with C5H5Fe(CO)2CH(C6H5) (OCH3) photolytically to give moderate yields of the four-membered chelate ring complexes C5H5Fe (CO) [(C6H5)2PN (CH2CH3) CH (C6H5)] and C5H5Fe (CO) [(C6H5)2 PN (CH2C6H5)CH(C6H5)], respectively. Photolysis of C5H5Fe(CO)2CH(C6H5) (OCH3) in the presence of (S)-(?)-diphenyl(1-phenylethylamino)phosphine leads to the isolation of C5H5Fe(CO)[(C6H5)2PNC(CH3) (C6H5)]CH2C6H5 which is proposed to arise from a formally 1,3-hydrogen shift rearrangement of an intermediate four-membered chelate ring complex.  相似文献   

6.
Treatment of Ir2Cl2(C8H14)4 with the phosphines t-Bu3?nP(CH2CMe3)n (n = 3,2,1) in hot toluene followed by crystallization of the products from C7H8/ EtOH mixtures gave the cyclometallated hydrides (C8H14)2Ir-μ-Cl2IrH[CH2CMe2CH2P(CH2CMe3)2][P(CH2 (I) [t-BuP(CH2CMe3)2]2H2Ir-μ-Cl2IrH[CH2CMe2CH2PBut(CH2CMe3)][t-BuP(CH2CMe3)2] (II), and [(t-Bu2PCH2CMe2CH2)HIrCl]2 (III). The dihydrides IrH2Cl[t-BuP(CH2CMe3)2]2 (IIa) and IrH2Cl(t-Bu2PCH2CMe3)2 (IIIa) were also isolated; these species were, however, more conveniently obtained by bubbling hydrogen through the solution of Ir2Cl2 (C8H14)4 and the respective phosphine in toluene. i-Pr3 reacted with the olefiniridium(I) precursor in C7H8/EtOH to yield the carbonyl complexes (i-Pr3P)2H2Ir-μ-Cl2Ir(CO)(PPri3)2 (IV) and IrCl(CO)(PPi3)2 (IVa), no cyclometallated product being detected. The stereochemistries of the complexes were deduced from IR, 1H, 31P, and 13C NMR data. The crystal structures of IIIa and IVa were also determined.  相似文献   

7.
The kinetics of the reaction of arylcyclopropanes (4-XC6H4C3H5, X = H, Me, EtO) with either [Pt2Cl2(μ-Cl)2(C2H4)2] or [{PtCl2(CH2CH2CH2)} in tetrahydrofuran to give in each case [{PtCl2(CHArCH2CH2)}4] and ethylene or cyclopropane, respectively, have been studied. The reactions are essentially first order in both arylcyclopropane and platinum complexes. The order of reactivity follows the series X = EtO > > Me > H, and [Pt2Cl2(μ-Cl)2(C2H4)2]> [{PtCl2(CH2CH2CH2)}4] and the rate is accelerated in polar solvents. Mechanisms in which the arylcyclopropane first coordinates to platinum and then undergoes ring opening reactions are proposed.  相似文献   

8.
The interaction of azobenzene and MnR(CO)5 (R  Me, Et, CH2Ph, CH2-C6Me5, COCF3, COCH2C6F5, COCH2OPh, Ph or C6F5) affords Mn(C6H4NNPh)-(CO)4, together with a binuclear complex Mn2(CO)6(C12H10N2) in some cases. The metallation reaction is shown to proceed most readily with Mn-(CH2Ph)(CO)5; with this reagent, the metallated complexes Mn(C6H4CH2PMe2)-(CO)3[PMe2(CH2Ph)] (two isomers) and Mn(C6H4CH2AsMe2(CO)4 have been obtained on treatment with EMe2(CH2Ph) (E  P and As, respectively).  相似文献   

9.
The cyclometallation of p-RC6H4CHNCH2C6H2, (R = H, Cl, NO2) by PdX2 (X = Cl, AcO) has been studied.In every case the cyclometallation occurs with formation of a five-membered ring containing the methine group. The structure of these compounds [PdX(p-RC6H3CHNCH2C6H5)]2, derived from 1H NMR spectra, are different from those reported previously. Reaction of these compounds with PEt3 gives the compounds [PdX(p-RC6H3CHNCH2C6H5)(PEt3)2] but with an excess of PPh3 only the complexes [PdX(p-RC6H3CHNCH2C6H5)(PPh3)] are formed.  相似文献   

10.
The preparation, properties and the complexation behaviour of o-lithiobenzyldiorganoarsines are described. Halogen-bridged binuclear complexes of the type [μ-ClM(o-C6C4CH2ER2)]2 (M = Pd, Pt; E = N,P) react with o-LiC6H4CH2ER2 (E = N, P, As), to form asymmetric metallacycles with two different donor atoms in the molecule. Some physical and chemical properties of these interesting complexes are discussed.  相似文献   

11.
When (t-Bu)2PCH2CHCH2CH2 is combined with [IrCl(C8H14)2]2 in toluene, the σ-bound cyclopropane complexes
(P(t-Bu)2CH2CHCH2CH2) (1a, 1b) are formed. Complexes 1a,1b react readily with H2 to form IrClH2P(t-Bu)2CH2CHCH2CH2)2 (2). In polar solvents 1a,1b isomerize to the σ-vinyl chelated complex IrClH(P(t-Bu)2CH2C(CH3)CH)(P(t-Bu)2CH2CHCH2CH2) (3). The structure of this 5-coordinate, 16-electron IrIII complex was deduced from spectroscopic data, reaction chemistry, and from the crystal structure of its CO adduct (4). Compound 4 crystallizes in the monoclinic space group C2h5-P21/n (a 15.610(14), b 15.763(16), c 11.973(13) Å, and β 104.74(5)°) with 4 molecules per unit cell. The final agreement indices for 2326 reflections having Fo2 > 3σ(Fo2) are R(F) = 0.089 and Rw(F) = 0.095 (271 variables) while R(F2) is 0.148 for the 3423 unique data. Bond lengths in the 5-atom chelate ring IrPCCC are IrP 2.341(4), PC 1.857(26), CC 1.520(30), CC 1.341(25), and CIr 1.994(21) Å. The IrCl distance is 2.479(5) Å.  相似文献   

12.
13.
Complexes of the types (C5H5)2TiClL, (C5H5)TiClL2 and [(C5H4)TiL2]2 (L is a monofunctional bidentate ligand) have been made by reactions of titanocene dichioride with the substituted pyrazolones, RCOC:C(OH)N(C6H5)N:CCH3 (where R = CH3, C2H6, C6H5 and p-ClC6H4) in the presence of triethylamine in refluxing THF. A possible mechanism for the formation of [(C5H4)TiL2]2 is suggested.  相似文献   

14.
Unstable transition metal compounds formed from hydridosilacyclobutanes are described: 1-methyl-1-silacyclobutane reacts with nonacarbonyldiiron to give the complexes [Fe(CO)4(H){Si(Me)CH2CH2CH2}] and [Fe{CH2CH2CH2Si(H)Me}(CO)4], and with bis(triphenylphosphine)(ethylene)platinum(0) to give [Pt(H)(PPh3)2{Si(Me)CH2CH2CH2}].  相似文献   

15.
The kinetics of the reaction of alkenes (e.g. cis-pent-2-ene, hex-1-ene, cyclopentene) with [PtX2(CH2CH2CH2)(THF)2] (X = Cl or Br, THF = tetrahydrofuran) or with [PtCl2(CHPhCH2CH2)(THF)2] in THF solution have been studied. The reactions occur with displacement of cyclopropane or phenylcyclopropane to give [PtCl2(olefin)(THF)], and follow essentially second order kinetics, first order in both platinum complex and olefin. The mechanism of reaction is discussed.  相似文献   

16.
The disproportionation reaction of diaryl ditellurides [(C6H5Te)2, (p-CH3C6H4Te)2, (p-CH3OC6H4Te)2, (p-C2H5OC4Te)2, (2-naphthyl-Te)2] with sodium hydroxide under phase transfer conditions at room temperature is described for the first time. The phase transfer catalyst used is 2HT-75, a trade name for a mixture of dialkyldimethylammonium chlorides. The intermediates aryl tellurolates react “in situ” with alkyl halides to give the corresponding alkyl aryl tellurides (ArTeR) in 52–72% yield. The following compounds were prepared: Ar  C6H5, R=CH3(CH2)3CH2, (CH3)2CHCH2CH2, (CH3)2CHCH2, CH3CHBrCH2CH2, CH3(CH2)8CH2, C6H5CH2, ClCH2, C6H5CH2CH2, CH2CHCH2, C6H5CHCHCH2, C6H5SeCH2, CH2CH2CH2CHCHCH; Ar=p-CH3C6H4, R = CH3(CH2)2CH2; Ar=p-CH3OC6H4, R = CH3(CH2)2CH2; Ar = p-CH2H5OC6H4, R= CH3(CH2)2CH2; Ar = 2-naphthyl, R = CH3(CH42)2CH2.  相似文献   

17.
The interaction of (Ph3P)2PtO2 (I) with the dicarboxylic acids HO2C(CH2)nCO2H (n = 1–3), phthalic acid and maleic acid gives the dicarboxylato complexes (Ph3P)2PtO(O)C(CH2)nC(O)O (II) (n = 1–3), (Ph3P)2PtO(O)CC6H4C(O)O (III) and cis-[(Ph3P)2Pt(O(O)CCHCHC(O)OH)2] (IV) in nearly quantitative yield. Thermal and photoinduced decarboxylation of III and IV yields the platina heterocycles (Ph3P)2PtC6H4C(O)O (V) and (Ph3P)2PtCHCHC(O)O (VI) with a carbon-platinum σ-bond. Complex VI has been characterized by an X-ray crystal structure determination.  相似文献   

18.
The heterocycle [(h5-C5H5)NiSP(CH3)2]2 is obtained by treatment of (h5-C5H5)2Ni with (CH3)2HPS in toluene and crystallizes monoclinic in the space group P21/c with Z = 2. The highly reactive three-membered ring (h5-C5H5)NiSP(CH3)2 which is a dissociation product of [(h5-C5H5)NiSP(CH3)2]2, can be trapped with bis(methoxycarbonyl)acetylene to give the PS containing nickelacyclopentadiene (h5-C5H5)NiSP(CH3)2CRCR (R  CO2CH3).  相似文献   

19.
The gaseous products of the photolysis at 25°C of the platinacyclobutane compounds [X2PtCH2CH2CH2(N-N)] where X = Cl, Br and N-N = 1,10-phenanthroline, 2,2′-bipyridine, (CH2NMe2)2, (C5H5N)2 in several solvents, in the absence and presence of various additives, have been determined. With solvents of relatively low dielectric constant (e.g. CH2Cl2), over 85 mol % of the hydrocarbon products was propene, the formation of which appears to involve a direct transfer of a hydrogen atom between neighbouring groups in the ring. With solvents of relatively high dielectric constant (MeCN, Me2SO) in the presence of species, e.g. I?, SbPh3, having a high trans effect, cyclopropane is the main volatile product. The effect of added halide ion and of the mixed solvents Me2SO/PhMe and Me2SO/PhSH indicates that ionisation of the platinacyclobutane and the formation of platinum substituted propyl ion-radicals precede the formation of cyclopropane (and the small amounts of ethylene produced).The photolysis of [X2PtCH2CH2CH2(MeCN)2] in methyl cyanide solution in the presence of Et3RNX′ (X′ = Cl, R = H; X′ = Br, R = Et) gives appreciable amounts of ethylene in the products (up to 25 mol %). It is suggested that the halide ions add to the platinum to give negatively charged platinacyclobutane species, the photodecomposition of which may give C2H4.  相似文献   

20.
Treatment of [{Ir(COD)(μ-Cl)}2] with excess of the electron-rich olefin [CN(Ar)(CH2)2NAr]2 (abbreviated as (LAr)2, Ar = C6H4Me-p or C6H4OMe-p) affords the ortho-metallated tricycle [Ir(LAr)3], which for Ar = C6H4Me-p (Ia) with HCL yields [Ir(LAr)2(LAr)]Cl (IV); X-ray data show that in IV there is an unexpectedly close Ir?C(o-aryl) contact (2;52(1) Å) involving the “free” LAr which compares with an IrC(o-aryl) distance of 2.09(3) Å in Ia or 2.07(3) Å in the ortho-metallated LAr ligand of complex IV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号