首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Electron paramagnetic resonance (EPR) of divalent manganese ion has been studied at 9.5 KMc/sec. These studies reveal that Mn2+ ion substitutes at a β-Cs+ site and gets associated with a vacancy at a neighbouring β-Cs+ site in the aft-plane. Thez-axis of this ββ complex makes an angle of 25° with the crystallographicb-axis. The spectra observed have been described by the spin-Hamiltonian for Mn2+ in rhombic crystalline field. The temperature dependence of the parameters D and E has been studied in the range 293°–77° K. The spectra for the observed complex along its three-principal axes have been analysed using second order perturbation equations. The spin-Hamiltonian parameters obtained from the spectra taken at room temperature are: $$\begin{gathered} g_z = 2 \cdot 000 \pm 0 \cdot 003, g_x = 2 \cdot 015 \pm 0 \cdot 003, g_y = 2 \cdot 000 \pm 0 \cdot 003; \hfill \\ A_z = - 93 \pm 1, A_x = - 91 \pm 1, and A_y = - 91 \pm 1 G; \hfill \\ D = - 941 \pm 3 and E = - 14 \pm 4 G; \hfill \\ b^\circ _4 = \left( {0 \cdot 0} \right), b_4 ^2 = \left( {13} \right), and b_4 ^4 = - 77 \pm 5 G \hfill \\ \end{gathered} $$   相似文献   

2.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

3.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

4.
A maximum principle is obtained for control problems involving a constant time lag τ in both the control and state variables. The problem considered is that of minimizing $$I(x) = \int_{t^0 }^{t^1 } {L (t,x(t), x(t - \tau ), u(t), u(t - \tau )) dt} $$ subject to the constraints 1 $$\begin{gathered} \dot x(t) = f(t,x(t),x(t - \tau ),u(t),u(t - \tau )), \hfill \\ x(t) = \phi (t), u(t) = \eta (t), t^0 - \tau \leqslant t \leqslant t^0 , \hfill \\ \end{gathered} $$ 1 $$\psi _\alpha (t,x(t),x(t - \tau )) \leqslant 0,\alpha = 1, \ldots ,m,$$ 1 $$x^i (t^1 ) = X^i ,i = 1, \ldots ,n$$ . The results are obtained using the method of Hestenes.  相似文献   

5.
Eleven bands of A10 belonging to the system (D2 Σ +-X2 Σ +) in the ultra-violet region have been analysed for their rotational structure. These are the 0-2, 1-3, 2-4, 0-3, 1-4, 3-0, 4-1, 3-1, 4-0, 5-1 and 6-1 bands lying at 2611.8Å, 2620.7Å, 2629.4Å, 2677.4Å, 2685.7Å, 2347.7Å, 2358.3Å, 2402.2Å, 2305.8Å, 2316.7Å and 2277.3Å respectively. The spin-splitting for the D2 Σ + state has been determined from the doubling of the rotational lines observed for the bands 0-2, 1-3, 2-4 and 1-4. The rotational and vibrational constants (in cm?1) evaluated for the D2 Σ + state are: $$\begin{gathered} T_a = 40267 \cdot 6 \hfill \\ G(V) = 817 \cdot 47 (v + 1/2) - 4 \cdot 795 (v + 1/2)^2 - 0 \cdot 1107 (v + 1/2)^3 \hfill \\ B_v = 0 \cdot 56522 - 0 \cdot 0046 (v + 1/2) - 0 \cdot 00005 (v + 1/2)^2 \hfill \\ \gamma = 0 \cdot 004 \pm 0 \cdot 002 \hfill \\ \sigma = - 0 \cdot 4 \pm 0 \cdot 1 \times 10^{ - 6} \hfill \\ \end{gathered} $$   相似文献   

6.
We consider a class of planar self-affine tiles T = M-1 a∈D(T + a) generated by an expanding integral matrix M and a collinear digit set D as follows:M =(0-B 1-A),D = {(00),...,(|B|0-1)}.We give a parametrization S1 →T of the boundary of T with the following standard properties.It is H¨older continuous and associated with a sequence of simple closed polygonal approximations whose vertices lie on T and have algebraic preimages.We derive a new proof that T is homeomorphic to a disk if and only if 2|A| |B + 2|.  相似文献   

7.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

8.
When k≥k0=10 Mr2n log (rn) we have for the trigonometric integral $$J_n (k,P) = \int_E {|S(A)|^{2k} dA,} $$ where $$\begin{gathered} S(A) = \sum _{x_1 = 1}^P \cdots \sum _{x_r = 1}^P \exp (2\pi if_A (x_1 , \ldots ,x_r )), \hfill \\ f_A (x_1 , \ldots ,x_r ) = \sum _{t_1 = 0}^n \cdots \sum _{t_r = 0}^n \alpha _{t_1 \cdots l_r } x_1^{t_1 } \cdots x_{r^r }^t \hfill \\ \end{gathered} $$ and E is the M-dimensional unit cube, the asymptotic formula $$J_n (k,P) = \sigma \theta P^{2kr - rnM/2} + O(P^{2kr - rnM/2 - 1/(2M)} ) + O(P^{2kr - rnM/2 - 1/(500r^2 \log (rn))} ),$$ where σ is a singular series and θ is a singular integral.  相似文献   

9.
In this paper, boundedness criteria are established for solutions of a class of impulsive functional differential equations with infinite delays of the form $$\begin{gathered} x'(t) = F(t,x( \cdot )), t > t^ * \hfill \\ \Delta x(t_k ) = I(t_k ,x(t_k^ - )), k = 1,2,... \hfill \\ \end{gathered} $$ By using Lyapunov functions and Razumikhin technique, some new Bazumikhin-type theorems on boundedness are obtained.  相似文献   

10.
The aim of the paper is to study a global structure of solutions of four differential inequalities $$\begin{gathered} \alpha _i y'_i (t)y_i + 1 \geqslant 0, y_i + 1(t) = 0 \Rightarrow y'_i (t) = 0, i = 1, 2, 3, 4, \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\alpha _i \in \{ - 1, 1\} , \alpha _1 \alpha _2 \alpha _3 \alpha _4 = - 1 \hfill \\ \end{gathered} $$ with respect to their zeros. The structure of an oscillatory solution is described, and the number of points with trivial Cauchy conditions is investigated.  相似文献   

11.
In the paper, we obtain the existence of positive solutions and establish a corresponding iterative scheme for BVPs $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u(0) - B(u\prime (\eta )) = 0, u\prime (1) = 0 \hfill \\ \end{gathered} \right.$$ and $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u\prime (0) = 0, u(1) + B(u\prime (\eta )) = 0 \hfill \\ \end{gathered} \right.$$ The main tool is the monotone iterative technique. Here, the coefficientq(t) may be singular att = 0,1.  相似文献   

12.
A thorough investigation of the systemd~2y(x):dx~2 p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤xx_0>0) -η, x_0≤x<2π(η>0)p(x)=p(x 2π),-∞相似文献   

13.
Estimates are obtained for the nonsymmetric deviations Rn [sign x] and Rn [sign x]L of the function sign x from rational functions of degree ≤n, respectively, in the metric $$c([ - 1, - \delta ] \cup [\delta ,1]), 0< \delta< exp( - \alpha \surd \overline n ), \alpha > 0,$$ and in the metric L[?1, 1]: $$\begin{gathered} R_n [sign x] _{\frown }^\smile exp \{ - \pi ^2 n/(2 ln 1/\delta )\} , n \to \infty , \hfill \\ 10^{ - 3} n^{ - 2} \exp ( - 2\pi \surd \overline n )< R_n [sign x_{|L}< \exp ( - \pi \surd \overline {n/2} + 150). \hfill \\ \end{gathered} $$ Let 0 < δ < 1, Δ (δ)=[?1, ? δ] ∪ [δ, 1]; $$\begin{gathered} R_n [f;\Delta (\delta )] = R_n [f] = inf max |f(x) - R(x)|, \hfill \\ R_n [f;[ - 1,1] ]_L = R_n [f]_L = \mathop {inf}\limits_{R(x)} \smallint _{ - 1}^1 |f(x) - R(x)|dx, \hfill \\ \end{gathered} $$ where R(x) is a rational function of order at most n. Bulanov [1] proved that for δ ε [e?n, e?1] the inequality $$\exp \left( {\frac{{\pi ^2 n}}{{2\ln (1/\delta }}} \right) \leqslant R_n [sign x] \leqslant 30 exp\left( {\frac{{\pi ^2 n}}{{2\ln (1/\delta + 4 ln ln (e/\delta ) + 4}}} \right)$$ is valid. The lower estimate in this inequality was previously obtained by Gonchar ([2], cf. also [1]).  相似文献   

14.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

15.
LetΛ 1(Ω) be the first eigenvalue of the vector-valued problem $$\begin{gathered} \Delta u + \alpha grad div u + \Delta u = 0 in \Omega , \hfill \\ u = 0 in \partial \Omega , \hfill \\ \end{gathered} $$ , withα>0. Letλ 1(Ω) be the first eigenvalue of the scalar problem $$\begin{gathered} \Delta u + \lambda u = 0 in \Omega , \hfill \\ u = 0 on \partial \Omega . \hfill \\ \end{gathered} $$ . The paper contains a proof of the inequality $$\left( {1 + \frac{\alpha }{n}} \right)\lambda _1 \left( \Omega \right) > \Lambda _1 \left( \Omega \right) > \left( \Omega \right)$$ and improves recent estimates of Sprössig [15] and Levine and Protter [11]. Moreover we show, ifΩ is a ball, that an eigensolution u1, associated withΛ 1(Ω) is not unique and that the eigensolutions for this and higher eigenvalues are never rotationally invariant. Finally we calculate some eigensolutions explicitly.  相似文献   

16.
The problem of finding the asymptotic number of solutions of the system of inequalities $$\begin{gathered} \left\| {\alpha _i q} \right\|< q^{ - \sigma _i } (i = 1,...,n), \sigma _i > 0, \hfill \\ \sigma = \sum\nolimits_{i = 1}^n {\sigma _i< c(\alpha _1 ,...,\alpha _n ), q = 1,...,N,} \hfill \\ \end{gathered}$$ is solved under the assumption that for real numbers α1,..., αn, starting from some Q=max(q1...,qn) the inequality holds for any real λ≥0.  相似文献   

17.
In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to q of the functional ∫ 0 π w (x,t,x,;q)dx (t is fixed) is computed, where W(x, t, s; q) is the Riemann function of the problem $$\begin{gathered} \frac{{\partial ^z u}}{{\partial x^2 }} - q(x)u = \frac{{\partial ^2 u}}{{\partial t^2 }} ( - \infty< x< \infty ), \hfill \\ u|_{t = 0} = f(x), \left. {\frac{{\partial u}}{{\partial t}}} \right|_{t = 0} = 0. \hfill \\ \end{gathered} $$   相似文献   

18.
In this paper we consider the behaviour of partial sums of Fourier—Walsh—Paley series on the group62-01. We prove the following theorems: Theorem 1. Let {n k } k =1/∞ be some increasing convex sequence of natural numbers such that $$\mathop {\lim sup}\limits_m m^{ - 1/2} \log n_m< \infty $$ . Then for anyfL (G) $$\left( {\frac{1}{m}\sum\limits_{j = 1}^m {|Sn_j (f;0)|^2 } } \right)^{1/2} \leqq C \cdot \left\| f \right\|_\infty $$ . Theorem 2. Let {n k } k =1/∞ be a lacunary sequence of natural numbers,n k+1/n kq>1. Then for anyfεL (G) $$\sum\limits_{j = 1}^m {|Sn_j (f;0)| \leqq C_q \cdot m^{1/2} \cdot \log n_m \cdot \left\| f \right\|_\infty } $$ . Theorems. Let µ k =2 k +2 k-2+2 k-4+...+2α 0,α 0=0,1. Then $$\begin{gathered} \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in L^\infty (G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = 0(m)^2 \} .} \hfill \\ \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = o(m)^2 \} = } \hfill \\ = \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} \hfill \\ \end{gathered} $$ . Theorem 4. {{S 2 k(f: 0)} k =1/∞ ,fL (G)}=m. $$\{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = c. \{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} = c_0 $$ .  相似文献   

19.
We establish sufficient conditions for the solvability of boundary-value problems of the form $$\begin{gathered} u'' = f(t,u,u'); \hfill \\ \begin{array}{*{20}c} {(u(0),} & {u'(0)) \in S_0 ,} & {(u(1),} & {u'(1)) \in S_1 .} \\ \end{array} \hfill \\ \end{gathered} $$   相似文献   

20.
This article provides an asymptotic formula for the number of integer points in the three-dimensional body $$ \left( \begin{gathered} x \hfill \\ y \hfill \\ z \hfill \\ \end{gathered} \right) = t\left( \begin{gathered} (a + r\cos \alpha )\cos \beta \hfill \\ (a + r\cos \alpha )\sin \beta \hfill \\ r\sin \alpha \hfill \\ \end{gathered} \right),0 \leqq \alpha ,\beta < 2\pi ,0 \leqq r \leqq b, $$ for fixed a > b > 0 and large t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号