首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report here a robust automated active site detection, docking, and scoring (AADS) protocol for proteins with known structures. The active site finder identifies all cavities in a protein and scores them based on the physicochemical properties of functional groups lining the cavities in the protein. The accuracy realized on 620 proteins with sizes ranging from 100 to 600 amino acids with known drug active sites is 100% when the top ten cavity points are considered. These top ten cavity points identified are then submitted for an automated docking of an input ligand/candidate molecule. The docking protocol uses an all atom energy based Monte Carlo method. Eight low energy docked structures corresponding to different locations and orientations of the candidate molecule are stored at each cavity point giving 80 docked structures overall which are then ranked using an effective free energy function and top five structures are selected. The predicted structure and energetics of the complexes agree quite well with experiment when tested on a data set of 170 protein-ligand complexes with known structures and binding affinities. The AADS methodology is implemented on an 80 processor cluster and presented as a freely accessible, easy to use tool at http://www.scfbio-iitd.res.in/dock/ActiveSite_new.jsp .  相似文献   

2.
We have developed a generic evolutionary method with an empirical scoring function for the protein-ligand docking, which is a problem of paramount importance in structure-based drug design. This approach, referred to as the GEMDOCK (Generic Evolutionary Method for molecular DOCKing), combines both continuous and discrete search mechanisms. We tested our approach on seven protein-ligand complexes, and the docked lowest energy structures have root-mean-square derivations ranging from 0.32 to 0.99 A with respect to the corresponding crystal ligand structures. In addition, we evaluated GEMDOCK on crossdocking experiments, in which some complexes with an identical protein used for docking all crystallized ligands of these complexes. GEMDOCK yielded 98% docked structures with RMSD below 2.0 A when the ligands were docked into foreign protein structures. We have reported the validation and analysis of our approach on various search spaces and scoring functions. Experimental results show that our approach is robust, and the empirical scoring function is simple and fast to recognize compounds. We found that if GEMDOCK used the RMSD scoring function, then the prediction accuracy was 100% and the docked structures had RMSD below 0.1 A for each test system. These results suggest that GEMDOCK is a useful tool, and may systematically improve the forms and parameters of a scoring function, which is one of major bottlenecks for molecular recognition.  相似文献   

3.
Structure-based drug discovery requires the iterative determination of protein-ligand costructures in order to improve the binding affinity and selectivity of potential drug candidates. In general, X-ray and NMR structure determination methods are time consuming and are typically the limiting factor in the drug discovery process. The application of molecular docking simulations to filter and evaluate drug candidates has become a common method to improve the throughput and efficiency of structure-based drug design. Unfortunately, molecular docking methods suffer from common problems that include ambiguous ligand conformers or failure to predict the correct docked structure. A rapid approach to determine accurate protein-ligand costructures is described based on NMR chemical shift perturbation (CSP) data routinely obtained using 2D 1H-15N HSQC spectra in high-throughput ligand affinity screens. The CSP data is used to both guide and filter AutoDock calculations using our AutoDockFilter program. This method is demonstrated for 19 distinct protein-ligand complexes where the docked conformers exhibited an average rmsd of 1.17 +/- 0.74 A relative to the original X-ray structures for the protein-ligand complexes.  相似文献   

4.
In the validation of protein-ligand docking protocols, performance is mostly measured against native protein conformers, i.e. each ligand is docked into the protein conformation from the structure that contained that ligand. In real-life applications, however, ligands are docked against non-native conformations of the protein, i.e. the apo structure or a structure of a different protein-ligand complex. Here, we have constructed an extensive test set for assessing docking performance against non-native protein conformations. This new test set is built on the Astex Diverse Set (which we recently constructed for assessing native docking performance) and contains 1112 non-native structures for 65 drug targets. Using the protein-ligand docking program GOLD, the Astex Diverse Set and the new Astex Non-native Set, we established that, whereas docking performance (top-ranked solution within 2 A rmsd of the experimental binding mode) is approximately 80% for native docking, this drops to 61% for non-native docking. A similar drop-off is observed for sampling performance (any solution within 2 A): 91% for native docking vs 72% for non-native docking. No significant differences were observed between docking performance against apo and nonapo structures. We found that, whereas small variations in protein conformation are generally tolerated by our rigid docking protocol, larger protein movements result in a catastrophic drop-off in performance. Some docking performance and nearly all sampling performance can be recovered by considering dockings produced against a small number of non-native structures simultaneously. Docking against non-native structures of complexes containing ligands that are similar to the docked ligand also significantly improves both docking performance and sampling performance.  相似文献   

5.
One main issue in protein-protein docking is to filter or score the putative docked structures. Unlike many popular scoring functions that are based on geometric and energetic complementarity, we present a set of scoring functions that are based on the consideration of local balance and tightness of binding of the docked structures. These scoring functions include the force and moment acting on one component (ligand) imposed by the other (receptor) and the second order spatial derivatives of protein-protein interaction potential. The scoring functions were applied to the docked structures of 19 test targets including enzyme/inhibitor, antibody/antigen and other classes of protein complexes. The results indicate that these scoring functions are also discriminative for the near-native conformation. For some cases, such as antibody/antigen, they show more discriminative efficiency than some other scoring functions, such as desolvation free energy (deltaG(des)) based on pairwise atom-atom contact energy (ACE). The correlation analyses between present scoring functions and the energetic functions also show that there is no clear correlation between them; therefore, the present scoring functions are not essentially the same as energy functions.  相似文献   

6.
The generation of molecular conformations and the evaluation of interaction potentials are common tasks in molecular modeling applications, particularly in protein-ligand or protein-protein docking programs. In this work, we present a GPU-accelerated approach capable of speeding up these tasks considerably. For the evaluation of interaction potentials in the context of rigid protein-protein docking, the GPU-accelerated approach reached speedup factors of up to over 50 compared to an optimized CPU-based implementation. Treating the ligand and donor groups in the protein binding site as flexible, speedup factors of up to 16 can be observed in the evaluation of protein-ligand interaction potentials. Additionally, we introduce a parallel version of our protein-ligand docking algorithm PLANTS that can take advantage of this GPU-accelerated scoring function evaluation. We compared the GPU-accelerated parallel version to the same algorithm running on the CPU and also to the highly optimized sequential CPU-based version. In terms of dependence of the ligand size and the number of rotatable bonds, speedup factors of up to 10 and 7, respectively, can be observed. Finally, a fitness landscape analysis in the context of rigid protein-protein docking was performed. Using a systematic grid-based search methodology, the GPU-accelerated version outperformed the CPU-based version with speedup factors of up to 60.  相似文献   

7.
The two great challenges of the docking process are the prediction of ligand poses in a protein binding site and the scoring of the docked poses. Ligands that are composed of extended chains in their molecular structure display the most difficulties, predominantly because of the torsional flexibility. On the basis of the molecular docking program QXP-Flo+0802, we have developed a procedure particularly for ligands with a high degree of rotational freedom that allows the accurate prediction of the orientation and conformation of ligands in protein binding sites. Starting from an initial full Monte Carlo docking experiment, this was achieved by performing a series of successive multistep docking runs using a local Monte Carlo search with a restricted rotational angle, by which the conformational search space is limited. The method was established by using a highly flexible acetylcholinesterase inhibitor and has been applied to a number of challenging protein-ligand complexes known from the literature.  相似文献   

8.
Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.  相似文献   

9.
NMR structures of protein-protein and protein-ligand complexes rely heavily on intermolecular NOEs. Recent work has shown that if no significant conformational changes occur upon complex formation residual dipolar coupling can replace most of the NOE restraints in protein-protein complexes, while restraints derived from chemical shift perturbations can largely replace intermolecular NOEs in protein-ligand structures. By combining restraints from chemical shift perturbations with orientation restraints derived from measurements of residual dipolar couplings, we show that the structure of the EIN-HPr complex can be calculated without NOE restraints. The final structure, built from the crystal structures of EIN and HPr in their uncomplexed form and docked only with NMR restraints, places HPr within 2.5 A of the position determined from the mean NMR structure of the complex.  相似文献   

10.
This paper describes the validation of a molecular docking method and its application to virtual database screening. The code flexibly docks ligand molecules into rigid receptor structures using a tabu search methodology driven by an empirically derived function for estimating the binding affinity of a protein-ligand complex. The docking method has been tested on 70 ligand-receptor complexes for which the experimental binding affinity and binding geometry are known. The lowest energy geometry produced by the docking protocol is within 2.0 A root mean square of the experimental binding mode for 79% of the complexes. The method has been applied to the problem of virtual database screening to identify known ligands for thrombin, factor Xa, and the estrogen receptor. A database of 10,000 randomly chosen "druglike" molecules has been docked into the three receptor structures. In each case known receptor ligands were included in the study. The results showed good separation between the predicted binding affinities of the known ligand set and the database subset.  相似文献   

11.
A new optimization model of molecular docking is proposed, and a fast flexible docking method based on an improved adaptive genetic algorithm is developed in this paper. The algorithm takes some advanced techniques, such as multi-population genetic strategy, entropy-based searching technique with self-adaptation and the quasi-exact penalty. A new iteration scheme in conjunction with above techniques is employed to speed up the optimization process and to ensure very rapid and steady convergence. The docking accuracy and efficiency of the method are evaluated by docking results from GOLD test data set, which contains 134 protein-ligand complexes. In over 66.2% of the complexes, the docked pose was within 2.0 A root-mean-square deviation (RMSD) of the X-ray structure. Docking time is approximately in proportion to the number of the rotatable bonds of ligands.  相似文献   

12.
Protein-ligand docking programs can generate a large number of possible binding orientations for each ligand candidate. The challenge is to identify the orientations closest to the native binding mode using a scoring method. Many different scoring functions have been developed for protein-ligand scoring, but their performance on binding mode prediction is often target-dependent. In this study, a statistical approach was employed to provide a confidence measure of scoring performance in finding close to the correct docked ligand orientations. It exploits the fact that the scores provided by an adequately performing scoring function generally improve as the ligand binding modes get closer to the correct native orientation. For such cases, the correlation coefficient of scores versus distances is expected to be highest when the most native-like orientation is used as a reference. This correlation coefficient, called the correlation-based score (CBScore), was used as an indicator of how far the docked pose was from the native orientation. The correlation between the original scores and CBScores as well as the range of CBScores were found to be good measures of scoring performance. They were combined into a single quantity, called the scoring confidence index. High values of the scoring confidence index were indicative of pronounced and relatively smooth binding energy landscapes with easily discernable global minima, resulting in reliable binding mode predictions. Low values of this index reflected rugged energy landscapes making the prediction of the correct binding mode very difficult and often unreliable. The diagnostic ability of the scoring confidence index was tested on a non-redundant set of 50 protein-ligand complexes scored with three commonly employed scoring functions: AffiScore, DrugScore and X-Score. Binding mode predictions were found to be three times more reliable for complexes with scoring confidence indices in the upper half than for cases with values in the lower half of the resulting range of 0–1.6. This new confidence measure of scoring performance is expected to be a valuable tool for virtual screening applications. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Molecular docking is a powerful computational method that has been widely used in many biomolecular studies to predict geometry of a protein-ligand complex. However, while its conformational search algorithms are usually able to generate correct conformation of a ligand in the binding site, the scoring methods often fail to discriminate it among many false variants. We propose to treat this problem by applying more precise ligand-specific scoring filters to re-rank docking solutions. In this way specific features of interactions between protein and different types of compounds can be implicitly taken into account. New scoring functions were constructed including hydrogen bonds, hydrophobic and hydrophilic complementarity terms. These scoring functions also discriminate ligands by the size of the molecule, the total hydrophobicity, and the number of peptide bonds for peptide ligands. Weighting coefficients of the scoring functions were adjusted using a training set of 60 protein-ligand complexes. The proposed method was then tested on the results of docking obtained for an additional 70 complexes. In both cases the success rate was 5-8% better compared to the standard functions implemented in popular docking software.  相似文献   

14.
Incorporating backbone flexibility into protein-ligand docking is still a challenging problem. In protein-protein docking, normal mode analysis (NMA) has become increasingly popular as it can be used to describe the collective motions of a biological system, but the question of whether NMA can also be useful in predicting the conformational changes observed upon small-molecule binding has only been addressed in a few case studies. Here, we describe a large-scale study on the applicability of NMA for protein-ligand docking using 433 apo/holo pairs of the Astex data sets. On the basis of sets of the first normal modes from the apo structure, we first generated for each paired holo structure a set of conformations that optimally reproduce its C(α) trace with respect to the underlying normal mode subspace. Using AutoDock, GOLD, and FlexX we then docked the original ligands into these conformations to assess how the docking performance depends on the number of modes used to reproduce the holo structure. The results of our study indicate that, even for such a best-case scenario, the use of normal mode analysis in small-molecule docking is restricted and that a general rule on how many modes to use does not seem to exist or at least is not easy to find.  相似文献   

15.
A novel approach to incorporate water molecules in protein-ligand docking is proposed. In this method, the water molecules display the same flexibility during the docking simulation as the ligand. The method solvates the ligand with the maximum number of water molecules, and these are then retained or displaced depending on energy contributions during the docking simulation. Instead of being a static part of the receptor, each water molecule is a flexible on/off part of the ligand and is treated with the same flexibility as the ligand itself. To favor exclusion of the water molecules, a constant entropy penalty is added for each included water molecule. The method was evaluated using 12 structurally diverse protein-ligand complexes from the PDB, where several water molecules bridge the ligand and the protein. A considerable improvement in successful docking simulations was found when including flexible water molecules solvating hydrogen bonding groups of the ligand. The method has been implemented in the docking program Molegro Virtual Docker (MVD).  相似文献   

16.
In this paper we describe the search strategies developed for docking flexible molecules to macomolecular sites that are incorporated into the widely distributed DOCK software, version 4.0. The search strategies include incremental construction and random conformation search and utilize the existing Coulombic and Lennard-Jones grid-based scoring function. The incremental construction strategy is tested with a panel of 15 crystallographic testcases, created from 12 unique complexes whose ligands vary in size and flexibility. For all testcases, at least one docked position is generated within 2 Å of the crystallographic position. For 7 of 15 testcases, the top scoring position is also within 2 Å of the crystallographic position. The algorithm is fast enough to successfully dock a few testcases within seconds and most within 100 s. The incremental construction and the random search strategy are evaluated as database docking techniques with a database of 51 molecules docked to two of the crystallographic testcases. Incremental construction outperforms random search and is fast enough to reliably rank the database of compounds within 15 s per molecule on an SGI R10000 cpu.  相似文献   

17.
The influence of various factors on the accuracy of protein-ligand docking is examined. The factors investigated include the role of a grid representation of protein-ligand interactions, the initial ligand conformation and orientation, the sampling rate of the energy hyper-surface, and the final minimization. A representative docking method is used to study these factors, namely, CDOCKER, a molecular dynamics (MD) simulated-annealing-based algorithm. A major emphasis in these studies is to compare the relative performance and accuracy of various grid-based approximations to explicit all-atom force field calculations. In these docking studies, the protein is kept rigid while the ligands are treated as fully flexible and a final minimization step is used to refine the docked poses. A docking success rate of 74% is observed when an explicit all-atom representation of the protein (full force field) is used, while a lower accuracy of 66-76% is observed for grid-based methods. All docking experiments considered a 41-member protein-ligand validation set. A significant improvement in accuracy (76 vs. 66%) for the grid-based docking is achieved if the explicit all-atom force field is used in a final minimization step to refine the docking poses. Statistical analysis shows that even lower-accuracy grid-based energy representations can be effectively used when followed with full force field minimization. The results of these grid-based protocols are statistically indistinguishable from the detailed atomic dockings and provide up to a sixfold reduction in computation time. For the test case examined here, improving the docking accuracy did not necessarily enhance the ability to estimate binding affinities using the docked structures.  相似文献   

18.
We present a novel method to estimate the contributions of translational and rotational entropy to protein-ligand binding affinity. The method is based on estimates of the configurational integral through the sizes of clusters obtained from multiple docking positions. Cluster sizes are defined as the intervals of variation of center of ligand mass and Euler angles in the cluster. Then we suggest a method to consider the entropy of torsional motions. We validate the suggested methods on a set of 135 PDB protein-ligand complexes by comparing the averaged root-mean square deviations (RMSD) of the top-scored ligand docked positions, accounting and not accounting for entropy contributions, relative to the experimentally determined positions. We demonstrate that the method increases docking accuracy by 10-21% when used in conjunction with the AutoDock docking program, thus reducing the percent of incorrectly docked ligands by 1.4-fold to four-fold, so that in some cases the percent of ligands correctly docked to within an RMSD of 2 A is above 90%. We show that the suggested method to account for entropy of relative motions is identical to the method based on the Monte Carlo integration over intervals of variation of center of ligand mass and Euler angles in the cluster.  相似文献   

19.
We present results of testing the ability of eleven popular scoring functions to predict native docked positions using a recently developed method (Ruvinsky and Kozintsev, J Comput Chem 2005, 26, 1089) for estimation the entropy contributions of relative motions to protein-ligand binding affinity. The method is based on the integration of the configurational integral over clusters obtained from multiple docked positions. We use a test set of 100 PDB protein-ligand complexes and ensembles of 101 docked positions generated by (Wang et al. J Med Chem 2003, 46, 2287) for each ligand in the test set. To test the suggested method we compared the averaged root-mean square deviations (RMSD) of the top-scored ligand docked positions, accounting and not accounting for entropy contributions, relative to the experimentally determined positions. We demonstrate that the method increases docking accuracy by 10-21% when used in conjunction with the AutoDock scoring function, by 2-25% with G-Score, by 7-41% with D-Score, by 0-8% with LigScore, by 1-6% with PLP, by 0-12% with LUDI, by 2-8% with F-Score, by 7-29% with ChemScore, by 0-9% with X-Score, by 2-19% with PMF, and by 1-7% with DrugScore. We also compared the performance of the suggested method with the method based on ranking by cluster occupancy only. We analyze how the choice of a clustering-RMSD and a low bound of dense clusters impacts on docking accuracy of the scoring methods. We derive optimal intervals of the clustering-RMSD for 11 scoring functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号