首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Hydrogen bonding in the Cu5(PO4)2(OH)4 polymorphs pseudomalachite, ludjibaite and reichenbachite has been studied by low-temperature single-crystal X-ray diffraction (XRD; pseudomalachite) and solid-state density functional theory (DFT; pseudomalachite, ludjibaite, reichenbachite) calculations. Pseudomalachite at 100 K is monoclinic, P21/c, a = 4.4436(4), b = 5.7320(5), c = 16.9300(15) Å, β = 91.008(8)°, V = 431.15(7) Å3 and Z = 2. The structure has been refined to R 1 = 0.025 for 1383 unique observed reflections with |F o| ≥ 4σF. DFT calculations were done with the CRYSTAL14 software package. For pseudomalachite, the difference between the calculated and experimental H sites does not exceed 0.152 Å. Structural configurations around hydroxyl groups in all three polymorphs show many similarities. Each OH5 group is involved in a three-center (bifurcated) hydrogen bond with the H···A distances in the range of 2.141–2.460 Å and the D–H···A angles in the range of 122.41°–139.30°, whereas each OH6 group forms a four-center (trifurcated) bond (H···A = 2.093–2.593 Å; D–H···A = 122.79°–137.71°). The crystal structures of the Cu5(PO4)2(OH)4 polymorphs are based on three-dimensional frameworks of Cu and P polyhedra. The copper-centered octahedra share edges to form two-dimensional layers parallel to (100) in all three structures. The layers have square voids above and beneath PO4 tetrahedra that link adjacent layers by sharing O atoms with two CuO6 octahedra each. From the topological point of view, none of the polymorphs can be obtained from another by a displacive transformation, and therefore pseudomalachite, ludjibaite and reichenbachite can be viewed as combinatorial polymorphs. According to information-based structural complexity considerations, the three phases are very similar in their configurational entropies and preferential crystallization of one phase over another cannot be entropy driven and is probably governed by other mechanisms that may involve such factors as structures of prenucleation clusters, chemical admixtures, etc.  相似文献   

2.
Solvothermal reactions of 2-ppds (2-ppds = di[4-(pyridin-2-yl)pyrimidinyl]disulfide) with ZnX2 (X = Cl, ClO4) in mixed CH3OH–CH2Cl2 solvent have been investigated. To better understand these reactions, solution analysis was conducted in parallel with single-crystal X-ray diffraction analysis of the in situ generated coordination complexes. At 120 °C, solvothermal reaction of 2-ppds with ZnCl2 resulted in a discrete mononuclear coordination complex formulated as [ZnCl2(L1)] (1), in which the zwitterion L1 (1-methyl-4-(pyridin-2-yl)pyrimidin-1-ium-2-olate) was formed in situ from 2-ppds, and solution analyses based on TLC and ESI–MS further showed that the reaction solution also contains in situ transformed products of L2 (bis(4-(pyridin-2-yl)pyrimidin-2-yl)sulfane) and L3 (2-methoxy-4-(pyridin-2-yl)pyrimidine). At 90 °C, solvothermal reaction between 2-ppds and Zn(ClO4)2 led to a discrete mononuclear coordination complex formulated as [Zn(SH)(L2)]ClO4 (2) that features a terminally bound –SH group, while the reaction solution was also found to contain a library of in situ reaction products of 2-ppds including L1, L2, L3 and L4 ((4-(pyridin-2-yl)pyrimidin-2-yl) 4-(pyridin-2-yl)pyrimidine-2-sulfonothioate). Thus, the heterocyclic disulfide 2-ppds is transformed in situ into various organic products in a series of reactions involving C–S/S–S bond cleavage.  相似文献   

3.
The structures of three novel octahedral rhenium cluster compounds [Re6S8(CN)2(py)4]·H2O (1), [Re6S8(CN)2(4-Mepy)4] (2), [Re6S8(CN)2(4-Mepy)4]·4-Mepy (3) (py = pyridine, 4-Mepy = 4-methylpyridine) are determined by X-ray crystallography. Crystal data are: C2/m space group, a = 14.813(1) Å, b = 14.772(1) Å, c = 9.2122(6) Å, β = 119.085(2)°, V = 1761.7(2) Å3, d x = 3.318 g/cm3, R = 0.0585 (1); I41/amd space group, a = 16.0018(3) Å, c = 14.7186(5) Å, V = 3768.81(16) Å3, d x = 3.169 g/cm3, R = 0.0489 (2); P21/c space group, a = 9.0452(4) Å, b = 15.8065(7) Å, c = 15.2951(6) Å, β = 103.700(2)°, V = 2124.57(16) Å3, d x = 2.957 g/cm3, R = 0.0245 (3). Molecular cluster complexes interact via π-π stacking affording 3D frameworks in 1 and 2 and chains in 3.  相似文献   

4.
By reaction of triphenylamylphosphonium iodide [Ph3AmP]I (I) with antimony iodide in acetone, triphenylamylphosphonium tetraiodide [Ph3AmP]2I4 (II) was synthesized. Crystals of I consist of triphenylamylphosphonium cations and iodine anions. Compound II contains two types of tetrahedral triphenylamylphosphonium cations, iodine anions, and [I3]? anions. Atoms P have a distorted tetrahedral coordination in cations I and II (the CPC angles are 106.48(12)°–111.25(12)° in I and 107.05(9)°–112.62(10)° in II). The centrosymmetric trinuclear [I3]? anion in II is nearly linear (the I(2)I(1)I(3) angle is 178.65°, the I(1)–I(2) and I(1)–I(3) bond lengths are 2.8925(2) Å and 2.9281(2) Å, respectively).  相似文献   

5.
Powder and single crystal X-ray diffraction studies have been performed for anhydrous nitrate complexes Rb2[Pd(NO3)4] (I) and Cs2[Pd(NO3)4] (II). Crystal data for I: a = 7.843(1) Å, b = 7.970(1) Å, c = 9.725(1) Å; β = 100.39(1)°, V = 597.9(1) Å 3, space group P21/c, Z = 2, d calc = 2.918 g/cm3; for II: a = 10.309(2) Å, b = 10.426(2) Å, c = 11.839(2) Å; β = 108.17(3)°, V = 1209.0(4) Å3, space group P21/c, Z = 4, d calc = 3.408 g/cm3. The structures are formed by isolated [Pd(NO3)4]2? complex anions and alkali metal cations. The plane-square environment of the Pd atom is formed from the oxygen atoms of the monodentate nitrate groups. The geometrical characteristics of the complex anions are analyzed. Compound II has a short contact Pd...Cs 3.252 Å.  相似文献   

6.
Novel complex salts [Au(en)2]Cl(ReO4)2 (I) and [Au(en)2](ReO4)3 (II), en = ethylenediamine, are obtained. Their crystal structures are determined by single crystal X-ray diffraction. Complex I crystallizes in the triclinic crystal system: a = 6.2172(7) Å, b = 7.1644(8) Å, c = 8.8829(8) Å, α = 96.605(4)°, β = 110.000(4)°, γ = 97.802(4)°, P-1 space group, Z = 1, d x = 3.905 g/cm3; complex II crystallizes in the monoclinic crystal system: a = 15.244(2) Å, b = 7.6809(8) Å, c = 9.3476(12) Å, β = 127.004(3)°, C2 space group, Z = 4, d x = 4.057 g/cm3.  相似文献   

7.
The structures of the Pd4(SBu)4(OAc)4 (I) and Pd6 (SBu)12 (II) palladium clusters are determined by the X-ray diffraction method. For cluster I: a = 8.650(2), b = 12.314(2), c = 17.659(4) Å, α = 78.03(3)°, β = 86.71(2)°, γ = 78.13(3)°, V = 1800.8(7) Å3, ρcalcd = 1.878 g/cm3, space group P \(\bar 1\), Z = 4, N = 3403, R = 0.0468; for structure II: a = 10.748(2), b = 12.840(3), c = 15.233(3) Å, α = 65.31(3)°, β = 70.10(3)°, γ = 72.91(3)°, V = 1767.4(6) Å3, ρ calcd = 1.605 g/cm3, space group P \(\bar 1\), Z = 1, N = 3498, R = 0.0729. In cluster I, four Pd atoms form a planar cycle. The neighboring Pd atoms are bound by two acetate or two mercaptide bridges (Pd…Pd 2.95–3.23 Å, Pd…Pd angles 87.15°–92.85°). In cluster II, the Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.09–3.14 Å, the PdPdPd angles being 118.95°–120.80°. The Pd atoms are linked in pairs by two mercaptide bridges. The formation of clusters I and II in solution is proved by IR spectroscopy and calorimetry. Analogous clusters are formed in solution upon the reaction of palladium(II) diacetate with thiophenol.  相似文献   

8.
Reaction of Os2(OAc)4Cl2 with an excess of HDPhF (HDPhF = N,N′-diphenylformamidine) gives a high yield of Os2(DPhF)4Cl2 (1), which can be converted to its azido analog, Os2(DPhF)4(N3)2 (3), by treatment with NaN3. We report a major improvement on the preparation of Os2(chp)4Cl (2; Hchp = 2-chloro-6-hydroxypyridine) by synthesizing the compound in the reducing solvent ethanol. Reaction of 2 with NaN3 affords the azido complex Os2(chp)4N3 (4). Compound 3 has been examined by X-ray crystallography, and has an Os–Os bond distance of 2.45 Å, suggesting a (π*)2 ground state for the molecule.  相似文献   

9.
Two cis-dioxomolybdenum(VI) complexes [MoO2L] (L: L 1, 2 and L: L 2, 3) in a phenol-based sterically encumbered N2O2 ligand environment have been synthesized, and their crystallographic characterizations are reported. The orange crystals of 2 are monoclinic, space group P21/a with unit cell dimensions as a=16.2407(17) Å, b=7.2857(8) Å, c=18.400(2) Å, β=98.002(9)°, Z=4, and d cal=1.486 g cm?3. The light orange crystals of 3, however, are orthorhombic, space group, Pbcn, with unit cell dimensions a=8.3110(12) Å, b=12.637(3) Å, c=34.673(5) Å, Z=4, and d cal=1.187 g cm?3. The structures were refined by a full-matrix least-squares procedure on F 2 to a final R=0.046 (0.055 for 3) using 4944 (3677) all independent data. In both the cases, the Mo atom exists in a distorted octahedral geometry defined by a N2O4 donor set, which features a cis-Mo(–O)2 and a trans-Mo(OPh)2 arrangement. Compound 2 undergoes a quasireversible one-electron reduction at ?1.3 V vs Ag/AgCl reference due to MoVIO2/MoVO2 electron transfer and thus providing a rare example of steric solution to the comproportionation–dimerization problem encountered frequently in the development of valid biomimetic models for the active sites of oxomolybdenum enzymes.  相似文献   

10.
New complexes of composition [Bi(DMSO)8][Fe(NCS)6] (1) and [Al(DMSO)6][Al(NCS)6] (2) have been prepared, and an octahedral hexarodanoaluminate anion has been structurally characterized for the first time. Crystals of compound 1 are triclinic, space group \(P\bar 1\), a = 11.2368(4) Å, b = 11.4063(4) Å, c = 21.0711(9) Å, α = 92.9520(10)°, β = 99.9430(10)°, γ = 111.9290(10)°, V = 2447.69(16) Å3, Z = 2, ρcalc = 1.680 g/cm3, R 1 = 0.0564; crystals of compound 2 are cubic, space group \(Pa\bar 3\), a = 15.8201(4) Å, V = 3959.39(17) Å3, Z = 4, ρcalc = 1.462 g/cm3, R 1 = 0.0475. The bismuth coordination polyhedron BiO8 in compound 1 is a distorted square antiprism with broken square faces (Bi-O, 2.368-2.582 Å). In the structure of 2, the cation disordered in a complex manner has an octahedral configuration (Al-O, 1.888(11)-1.912(11) Å).  相似文献   

11.
Tris(5-bromo-2-methoxyphenyl)bismuth dicarboxylates [(C6H3(Br-5)(MeO-2)]3Bi[OC(O)CHal3]2, Hal = F (II) and Cl (III), have been synthesized by the reaction between tris(5-bromo-2-methoxyphenyl)bismuth (I) and trifluoroacetic acid and thrichloroacetic acid, respectively, in the presence of hydrogen peroxide in ether. According to X-ray diffraction data, a crystal of complex I contains two types of crystallographically independent molecules (a and b) both with a trigonal pyramid configuration. The bismuth atoms in complexes II and III have a distorted trigonal bipyramidal coordination with carboxylate substituents in axial positions. Axial OBiO angles are 166.3(3)° (II) and 171.6(2)° (III); equatorial CBiC angles are 118.0(3)°–123.1(3)° (II) and 113.6(3)°–127.4(3)° (III). Bi–C bond lengths are 2.189(7)–2.200(8) Å (II) and 2.190(8)–2.219(7) Å (III), and Bi–О distances are 2.280(6), 2.459(16) Å (II) and 2.264(5), 2.266(5) Å (III). Intramolecular contacts between the central atom and the oxygen atoms of carbonyl groups (Bi···O 3.028(9), 3.162(9) Å (II); 3.117(9), 3.202(9) Å (III)) are observed at maximum equatorial angles. The oxygen atoms of methoxy groups are coordinated to the bismuth atom. The Bi···O distances in complexes II and III (3.028(16), 3.157(16), 3.162(16) and 3.17(16), 3.143(16), 3.202(16) Å, respectively) are slightly longer than in complex I (3.007(9)–3.136(4) Å).  相似文献   

12.
The coordination polymers [AgPF6(Me4Pyz)2] (I) and [AgPF6(2,3-Et2Pyz)2] (II) were synthesized, and their structures were determined. Crystals of I are monoclinic, space group C2/c, a = 10.213(2) Å, b = 16.267(3) Å, c = 12.663(3) Å, β = 92.90(3)°, V = 2102.1(7) Å3, ρcalcd = 1.660 g/cm3, Z = 4. The structure of I is built of polymeric zigzag [Ag(C8H12N2)] + chains and octahedral [PF6] anions. The coordination polyhedron of the Ag+ ion is a flat triangle. Crystals of II are tetragonal, space group P \(\bar 4\)2(1)/c,a = b = 10.641(1) Å, c = 18.942(1) Å, V = 2144.6(2) Å3, ρcalcd = 1.627 g/cm3, Z = 4. In the structure of II, 2D cationic layers of fused square rings exist; the rings consist of four Ag+ cations linked by four bridging ligands of diethylpyrazine Et2Pyz. The coordination polyhedron of the Ag+ ion is an irregular four-vertex polyhedron.  相似文献   

13.
Macrocyclic and supermolecular complexes [Cu2(NiL)2Cl4] (I) and [Cd2(CuL)2Cl4] (II) (H2L = 2,3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-diene) have been synthesized and structurally determined by X-ray diffraction and IR spectrum. Complex I crystallizes in the monoclinic system with P21/n group, a = 10.9019(15), b = 14.3589(19), c = 12.4748(17) 0A, β = 108.645(2)°, Z = 4. Complex II crystallizes in the monoclinic system with P21/n group, a = 10.9784(16), b = 14.580(2), c = 12.8904(18) Å, β = 109.339(2)°, Z = 4.  相似文献   

14.
The single crystals of [UO2SO4{(CH3)HNCONH(CH3)}2] (I) were synthesized and studied by X-ray diffraction. The crystals are monoclinic, a = 6.847(1) Å, b = 14.259(3) Å, c = 14.297(3) Å, β = 93.451(4)°, space group P21/n, Z = 4. The main structural units of crystals I are ribbons whose composition coincides with the composition of the compound. The crystal chemical formula of the complex is AT3M 2 1 (A = UO 2 2+ ).  相似文献   

15.
Crystals of double polyphosphates EuCs5(PO3)8 (I) and GdCs5(PO3)8 (II) have been studied by X-ray diffraction. The isostructural crystals of I and II are monoclinic, space group C2. Only unit cell parameters have been determined for the crystals of double Pr and Cs polyphosphate (III). This crystal is isostructural with earlier studied La3Cs15P24O72 · 6H2O (IV). The crystals of compounds III and IV are triclinic, space group P1, Z = 1; a = 11.987(2) and 12.178(5) Å, b = 14.754(8) and 14.740(8) Å, c = 14.692(8) and 14.847(9) Å, α = 60.15(4)° and 60.87(5)°, β = 67.04(4)° and 66.35(4)°, γ = 78.76(3)° and 77.54(4)°, respectively. In compounds I and II, the polyphosphate anions exist as infinite chains. The MIIIO8 polyhedra are isolated from each other but share edges and faces with the CsO n polyhedra.  相似文献   

16.
Two napelline skeletal diterpenoid alkaloids 15-acetylsongorine, C24H33NO4 I, and songoramine, C22H29NO3 II, were first isolated from the roots of Aconitum Szechenyianum Gay. The crystal structures were determined by X-ray single-crystal diffraction analysis. The crystal I is the triclinic system with space group P1 having unit cell parameters of a = 9.360(8) Å, b = 11.593(9) Å, = 11.830(16) Å, α = 113.223(15)°, β = 105.950(16)°, γ = 101.296(12)°, and Z = 2. Hydrogen bonds O–H···O and O–H···N joint the molecules into dimer. The crystal II belongs to the orthorhombic system with space group P212121 having unit cell parameters of a = 8.950(2) Å, = 13.272(3) Å, = 15.454(4) Å and Z = 4. The O–H···O hydrogen bonding interaction links the molecule into linear chains. The distortion of rings of compound I and II were evaluated by calculation of the Cremer and Pople puckering parameters. The presence of the C–O–C bond in the compound II results in the changes of ring conformations compared with that of the compound I.  相似文献   

17.
Coordination polymers [Ag(C4H10N2)]ReO4 (I) and [Ag(C4H10N2)]PF6 (II) (C4H10N2 is piperazine, Ppz) were synthesized and their structures were determined. Crystals of compound I are monoclinic, space group P21/c, a = 6.207(1) Å, b = 12.533(1) Å, c = 11.386(1) Å, β = 93.41(1)°, V = 884.2(2) Å3, ρcalc = 3.337 g/cm3, Z = 4. Crystals of II are monoclinic, space group C2/m, a = 8.723(1) Å, b = 9.083(1) Å, c = 5.797(1) Å, β = 95.07(1)°, V = 457.5(1) Å3, ρcalc = 2.548 g/cm3, Z = 2. Structure I contains polymer chains [Ag(Ppz)] + . The silver atom is linked with two nitrogen atoms of the adjacent Ppz ligands to form a nearly linear fragment; the Ag-Nav distance is 2.173 Å, and the NAgN angle is 169.4(3)°. The chains are linked with each other by weak interactions Ag…O(ReO4) (2.643(8) Å) and N-H…O hydrogen bonds. The structure of compound II also contains cationic polymer chains [Ag(Ppz)] + . The Ag+ ion is located in the inversion center and has a linear coordination (Ag-N distance is 2.171(9) Å). The central P atom of the octahedral fluorophos-phate ion is also located in the inversion center; the anion is slightly distorted and has no contacts with silver ions at a distance <3.4 Å.  相似文献   

18.
Tungsten tetraiodide WI4 (1) is produced by a high-temperature reaction of WTe2 and I2 in a vacuum sealed ampoule. The crystals of 1 belong to the triclinic crystal symmetry, space group P-1, Z = 4, a = = 7.9291(3) Å, b = 10.7695(4) Å, c = 10.8117(4) Å, α = 85.668(1)°, β = 71.772(1)°, γ = 71.559(1)°, V = = 831.60(5) Å3, dcalc = 5.523 g/cm3. The structure of 1 consists of tetrameric W4I16 molecules in which W atoms are in a distorted octahedral environment formed by I atoms.  相似文献   

19.
New barium bismuth oxides have been synthesized under an argon atmosphere at 530 and 430°C, respectively: a Ba: Bi = 1 : 4 phase has a tetragonal perovskite structure, and a 1 : 15 phase has a rhombohedral structure. For the 1 : 4 phase, the unit cell parameters are a = 4.297(2) Å and c = 4.472(2) Å as determined by powder X-ray diffraction (XRD). Electron diffraction (ED) patterns show superstructure reflections with the vectors q 1= 1/17[530], q 2 = 1/17[3\(\bar 5\)0], and q 3 = 1/5[002]. These reflections point to an ordered arrangement of barium and bismuth ions in the supercell with the parameters √17a and 5c. The supercell of the 1 : 4 phase includes a ten-layer stack of metal-oxygen planes along the c axis. The rhombohedral 1 : 15 phase has the following hexagonal unit cell parameters as determined by XRD: a= 6.018(2) Å, c = 4.070(2) Å. In view of the superstructure on the ED patterns, the supercell parameters of the rhombohedral phase are 4a and 2c. The supercell of the 1 : 15 phase contains a six-layer stack of planes along the c axis.  相似文献   

20.
A new Mo2O3(dpm)4 compound (I) is synthesized by the interaction of Mo(CO)6 with 2,2,6,6-tetramethylheptanedione-3,5 (dpm). The structure of complex I determined by the XRD method is as follows: triclinic crystal system, space group P–1, a = 10.1780(7) Å, b = 10.1817(6) Å, c = 13.3255(9) Å, α = 110.562(2)°, β = 102.233(2)°, γ = 93.9041(19)°, V = 1248.17(14) Å3. The compound is characterized by IR spectroscopy, mass-spectrometry and thermogravimetric analysis (TGA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号