首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究入射激波变化的隔离段内激波串的运动特性,设计并搭建了直连式变Mach数实验系统,捕捉了相同来流Mach数变化速率、不同背压变化速率下激波串的运动行为,揭示了入射激波与背压同时变化对激波串运动的影响机理。入射激波与背压同时变化时,共有3个方面的因素会影响激波串整体的上下游运动趋势,其一,Mach数变化,Mach数增大导致激波串向下游运动,该影响随Mach数增大逐渐减弱;其二,背景波系移动,背景激波反射点靠近激波串前缘时,可能引起激波串的突跳;其三,背压压比变化,背压压比增大时激波串向上游运动,该影响随背压压比增大逐渐增强。三方面因素共同作用下激波串表现出复杂的运动。  相似文献   

2.
We show that in the collision of two superfluid fermionic atomic clouds one observes the formation of quantum shock waves as discontinuities in the number density and collective flow velocity. Domain walls, which are topological excitations of the superfluid order parameter, are also generated and exhibit abrupt phase changes by π and slower motion than the shock waves. The domain walls are distinct from the gray soliton train or number density ripples formed in the wake of the shock waves and observed in the collisions of superfluid bosonic atomic clouds. Domain walls with opposite phase jumps appear to collide elastically.  相似文献   

3.
普通活塞在管道中运动, 不论活塞速度高低都能驱动产生激波.空心活塞在管道中运动与普通活塞不同, 当其运动Mach数低于壅塞Mach数, 活塞前不会形成运动激波; 只有活塞运动Mach数超出壅塞Mach数, 才能驱动产生激波.壅塞Mach数由空心活塞中心孔直径、长度和内壁面摩擦系数以及外直径横截面积决定.火车通过隧道类似空心活塞在管道中运动.将火车车箱与隧道间的空隙换算成有效水力直径后, 可利用空心活塞在管道中运动计算壅塞Mach数的方法, 求出火车通过隧道出现激波的条件.文章提出一种新颖的间接测量列车平均摩擦系数新方案.   相似文献   

4.
Whistler wave trains are observed in the foot region of high Mach number quasiperpendicular shocks. The waves are oblique with respect to the ambient magnetic field as well as the shock normal. The Poynting flux of the waves is directed upstream in the shock normal frame starting from the ramp of the shock. This suggests that the waves are an integral part of the shock structure with the dispersive shock as the source of the waves. These observations lead to the conclusion that the shock ramp structure of supercritical high Mach number shocks is formed as a balance of dispersion and nonlinearity.  相似文献   

5.
The evolution characteristics of dust-acoustic shock wave phenomenon in an arbitrarily charged dusty plasma in presence of pair-ion are investigated by deriving modified Complex Burgers’ equation. In this work, the effect of state of both the ions on the shock wave potential is analysed and discussed in detail. It has been observed that the variation of the non-linear coefficient is more consistent with the non-isothermal positive ions moving toward thermal equilibrium than with non-isothermal negative ions. A significant effect on the amplitude of the shock wave potential is observed as the distribution of the non-isothermal positive and negative ions changes from a hump shape through the flat-topped to Boltzmann type. A weighty effect on the height of the shock wave is observed as and when the Mach number of positive and negative ions changes. The shock wave potential shows a greater (lesser) value with negative (positive) ions moving ahead for thermal equilibrium.  相似文献   

6.
The entry of a shock wave with the Mach number Mis = 2.03 into a microchannel and its further propagation is numerically studied with the use of kinetic and continuum approaches. Numerical simulations on the basis of the Navier ?? Stokes equations and the Direct Simulation Monte Carlo method are performed for different Knudsen numbers Kn = 8·10?3 and 8·10?2 based on the microchannel half-height. At the Knudsen number Kn = 8·10?3, amplification of the shock wave after its entry into the microchannel is observed. Further downstream, the shock wave is attenuated, which is in qualitative agreement with experimental data. It is demonstrated that results predicted by a quasi-one-dimensional model (which ignores viscosity and heat conduction) of shock wave propagation over a channel with an abrupt change in the area agrees with results of numerical simulations on the basis of the Euler equations. In both cases, shock wave acceleration (amplification) after its entry into the microchannel is observed. At the Knudsen number Kn = 8·10?2, the influence of the entrance shape on shock wave propagation over the microchannel is examined. Intense attenuation of the shock wave is observed in three cases: channel with sudden contraction, junction of two channels with an additional thin separating plate, and rounded junction in the form of a sector with an angle of 90° (quarter of a circumference). It is shown that the microchannel entrance shape can affect further propagation of the shock wave. The wave has the highest velocity in the case with a rounded entrance.  相似文献   

7.
The piston shock problem is a classical result of shock wave theory. In this work, the analogous dispersive shock wave (DSW) problem for a fluid described by the nonlinear Schr?dinger equation is analyzed. Asymptotic solutions are calculated for a piston (step potential) moving with uniform speed into a dispersive fluid at rest. In contrast to the classical case, there is a bifurcation of shock behavior where, for large enough piston velocities, the DSW develops a periodic wave train in its wake with vacuum points and a maximum density that remains fixed as the piston velocity is increased further. These results have application to Bose-Einstein condensates and nonlinear optics.  相似文献   

8.
An electrostatic model for the shock observed in the earth's polar region is established by deriving the “Sagdeev potential” from the magnetohydrodynamic equations in a cylindrical coordinate system. The results show that the shock can develop from the ion acoustic wave or ion cyclotron wave in the polar region, and can exist when the Mach number M and the initial electric field E0 satisfy the condition of |(a/M2-1)E0|=1. Also, some features of the shock wave are discussed. The result can interpret the electrostatic shock observed in the earth's polar region.  相似文献   

9.
Aluminum ablation by multiple femtosecond laser pulses is investigated via time-resolved shadowgraphs and scanning electron microscope(SEM) images of the ablation spot. The spatial distribution of the ejected material and the radius of the shock wave generated during the ablation are found to vary with the increase in the number of pulses. In the initial two pulses, nearly concentric and semicircular stripes within the shock wave front are observed, unlike in subsequent pulses. Ablation by multiple femtosecond pulses exhibits different characteristics compared with the case induced by single femtosecond pulse because of the changes to the aluminum target surface induced by the preceding pulses.  相似文献   

10.
An experimental and theoretical investigation of shock-associated noise of inverted-profile coannular jets is described. For a fixed fan-stream Mach number, it is observed that the shock-associated noise often drops suddenly to a minimum as the reservoir pressure of the primary jet increases. When this happens, the almost periodic shock cell structure of the fan stream is found to nearly completely disappear. In this paper, an analytical model of this phenomenon is constructed and studied. It is theoretically established that this sudden change in the shock structure and hence the decrease in shock associated noise would occur when the primary jet flow is just slightly supersonic regardless of the Mach number and temperature of the fan stream. This minimum shock associated noise condition is confirmed in several series of experiments.  相似文献   

11.
The direct simulation Monte Carlo (DSMC) method is used for modeling the problem on the shock wave front in the 0.7%I2-99.3%He mixture for a shock wave Mach number of 4.85. The choice of this system is due to the fact that intense radiation peaks have been observed experimentally precisely in such systems and it has been convincingly proven that this effect is induced by high-energy collisions between I2 molecules. The results of simulation provide additional sound arguments in favor of the conclusion that the translational nonequilibrium state at the shock wave front in a light gas with a small admixture of heavy nonreacting molecules may cause the experimentally observed nonequilibrium radiation peaks.  相似文献   

12.
隔离段激波串流场特征的试验研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
易仕和  陈植 《物理学报》2015,64(19):199401-199401
高超声速推进技术是国际前沿研究, 其中双模态超燃冲压发动机的发展受到极大关注. 作为超燃冲压发动机的重要部件, 隔离段对发动机的性能和高超声速飞行的实现至关重要, 其中所涉及的流动机理问题也极为复杂. 自从高超声速飞行的概念被提出和论证以来, 相关的理论、试验和仿真研究不断取得进展, 但是对其中的机理问题研究仍有待进一步深入. 本文将从试验研究的角度回顾并综述近年来超燃冲压发动机隔离段的研究进展, 结合精细流动测试技术(Nano-tracer Planar Laser Scattering, NPLS)的发展分析了隔离段流场特征, 包括了激波串流场复杂的三维时空结构特点、湍流特性、非线性迟滞运动、不启动流场特征以及激波前缘检测等. 从风洞设备、隔离段设计、测试技术等方面对隔离段的试验研究进行了分类比较和论述, 对今后隔离段试验研究提出了建议.  相似文献   

13.
We use multimillion-atom molecular dynamics simulations to study shock wave propagation in fcc crystals. As shown recently, shock waves along the <100> direction form intersecting stacking faults by slippage along 111 close-packed planes at sufficiently high shock strengths. We find even more interesting behavior of shocks propagating in other low-index directions: for the <111> case, an elastic precursor separates the shock front from the slipped (plastic) region. Shock waves along the <110> direction generate a leading solitary wave train, followed (at sufficiently high shock speeds) by an elastic precursor, and then a region of complex plastic deformation.  相似文献   

14.
为考察气体第二粘性(体积粘性)对正激波内部流动的影响机制,数值求解含第二粘性的一维Navier-Stokes方程组.结果表明:第二粘性对激波内部的密度、热流和能量分布等物理量具有抹平效应,导致热流和熵流的峰值减小、激波厚度增加,体积粘性耗散的增加使得一部分机械能转化为内能;考虑第二粘性所计算的密度分布和激波厚度大为改善,与实验数据吻合较好;当马赫数为1.2≤Ma≤10,激波内部的Knudsen数满足0.12≤Kn≤0.4,对于马赫数Ma≤4.0的激波内部流动,考虑第二粘性的连续流Navier-Stokes方程组能够准确地模拟正激波结构.  相似文献   

15.
The energy for creating a temporal train of nearly harmonic superoscillations is studied. It is shown that the power of sources necessary for creating the train of such superoscillations increases exponentially with the number of periods in the train and with the frequency of superoscillations.  相似文献   

16.
We describe results from the first statistical study of waveform capture data during 67 interplanetary (IP) shocks with Mach numbers ranging from approximately 1-6. Most of the waveform captures and nearly 100% of the large amplitude waves were in the ramp region. Although solitary waves, Langmuir waves, and ion acoustic waves (IAWs) are all observed in the ramp region of the IP shocks, large amplitude IAWs dominate. The wave amplitude is correlated with the fast mode Mach number and with the shock strength. The observed waves produced anomalous resistivities from approximately 1-856 Omega.m (approximately 10(7) times greater than classical estimates.) The results are consistent with theory suggesting IAWs provide the primary dissipation for low Mach number shocks.  相似文献   

17.
汽液两相混合物的加速与激波的热力学分析   总被引:15,自引:2,他引:13  
本文分析了单相流和两相流通过喷管实现超音速流动的过程,建立数学模型并求解了两相流动在流道内加速至超音速的过程和超音速两相流动产生激波前后的热力学参数,得出了两相流动激波前后在不同升压比下参数的变化,两相流动激波前后的最高升压比与波前马赫数的关系式,分析了激波前后的熵产和 损。  相似文献   

18.
 利用水的简化物态方程讨论了水中斜激波波后流动马赫数、密度比、压强增量及冲击角与来流马赫数的关系,给出了一个无量纲化的激波极线方程;对附体激波转变为脱体激波及波后流动为等声速流的条件进行了讨论。  相似文献   

19.
In contrast with the roll-up of fluid interfaces through Kelvin-Helmholtz instability, recent numerical simulations with small amplitude perturbations of supersonic jets reveal another very different coherent mode of nonlinear acoustical instability of jets through the appearance of regular zig-zag shock patterns which traverse the interior of the jet and amplify as time evolves. In this paper, through a combination of appropriate ideas from linear and nonlinear high frequency geometric optics, the authors develop a quantitative theory which predicts the nonlinear development of zig-zag modes with a structure like those observed in the numerical simulations. The perturbation analysis is developed via a systematic application of nonlinear small amplitude high frequency geometric optics to the complex free surface problem defined by the perturbed jet; this procedure automatically yields simplified asymptotic equations which are analyzed explicitly and lead to the development of regular amplifying “zig-zag” shock structures in the jet. For a given streamwise period, Mach number, and jet width, the asymptotic theory gives explicit criteria for the number and structure of different regular zig-zag shock patterns which amplify with time. For Mach numbers M < 1, there are no amplifying acoustic zig-zig modes while for M > 1, there are a finite number of such modes depending on Mach number, jet width, and streamwise period. Explicit criteria to select the most destabilizing of these nonlinear eigenmodes are developed as well as several new quantitative predictions regarding the nonlinear development of acoustical instabilities in supersonic jets including the phenomenon of “super-resonance” for special values of the streamwise period.  相似文献   

20.
Femtosecond laser-driven approximately 1 GPa shock waves are used to compress monolayers of hydrocarbon chains. Vibrational sum-frequency generation spectroscopy probes the orientation of the terminal methyl groups. With an odd number (15) of carbon atoms, shock compression is an elastic process that causes the methyl groups to tilt. With an even number (18) of carbon atoms, shock compression is viscoelastic, creating single and double gauche defects. When the shock unloads, single gauche defects remain while double defects relax in 30 ps to single-defect states with more upright methyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号