首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are reviewing the state of electrochemical sensing of H2O2 based on the use of metal nanoparticles. The article is divided into subsections on sensors based on nanoparticles made from Ag, Pt, Pd, Cu, bimetallic nanoparticles and other metals. Some sensors display high sensitivity, fast response, and good stability. The review is subdivided into sections on sensors based on heme proteins and on nonenzymatic sensors. We also discussed the challenges of nanoscaled sensors and their future aspects.
Figure
Sensing mechanism of (A) mediator-based enzyme biosensor, (B) mediator-less enzyme biosensor and (C) nonenzymatic sensors with metal nanoparticles for the electrocatalytic reduction toward H2O2  相似文献   

2.
We have prepared porous and network-like nanofilms of gold by galvanic replacement of a layer of copper particles acting as a template. The films were first characterized by scanning electron microscopy and X-ray diffraction, and then modified with cysteamine so to enable the covalent immobilization of the enzyme microperoxidase-11. The immobilized enzyme undergoes direct electron transfer to the underlying electrodes, and the electrode displays high electrocatalytic activity towards the reduction of oxygen and hydrogen peroxide, respectively, owing to the largely enhanced electroactive surface of the porous gold film. The detection limit of H2O2 is 0.4 μM (3 S/N).
Figure
In this work, porous network-like Au films were prepared by galvanic replacement using Cu film as a sacrificial template. The cysteamine modified Au film was used to immobilize microperoxidase-11, which showed good stability and excellent electrochemical performance towards the reduction of O2 and H2O2, respectively  相似文献   

3.
We have developed a 3-dimensional (3-D) electrochemical sensor for highly sensitive detection of hydrogen peroxide (H2O2). Porous 3-D carbon nanofibers (CNFs), prepared by electrospinning, served as scaffold on a glassy carbon electrode. The 3-D CNFs were functionalized with platinum nanoparticles (Pt-NPs) by in-situ gas-phase decomposition of platinum salts at high temperature. The Pt-NPs act as an electrocatalyst for the decomposition of H2O2. TEM revealed that large amounts of Pt-NPs are deposited in the electrospun CNFs electrode even without using any stabilizer or reducing reagent. The sensor was investigated by cyclic voltammetry and amperometry and displays a good response to H2O2 with a linear range between 10 μM and 15 mM (R?=?0.9994), a low detection limit (3.4 μM at a signal-to-noise ratio of 3), and a response time of 3 s. The sensor shows excellent stability and selectivity.
Figure
We report the direct growth of the Pt NPs in the 3-D CNFs via electrospinning and sequent thermal treatment. We demonstrate the use of 3-D architecture novel Pt/CNFs electrode for nonenzymatic electrochemical sensing of H2O2. The sensor shows outstanding performance in terms of detection range, detection limit, response time, stability and selectivity.  相似文献   

4.
We report on a carbon nanotube (CNT) fiber microelectrode coated with palladium nanoparticles (PdNPs) and enabling electrochemical sensing of hydrogen peroxide (H2O2). The synergistic effects of the CNT fibers (good mechanical strength and large surface area) and of the PdNPs (high electrocatalytic activity) result in a microelectrode for H2O2 that exhibits a 2-s response time, a detection limit as low as 2 μM, a sensitivity of 2.75 A cm?2 M?1, and a linear response range from 2 μM to 1.3 mM (R?=?0.9994). The sensor is also selective and not interfered by potentially competing species in biological fluids, thus representing an inexpensive but highly sensitive and selective microsensor for H2O2.
Figure
Images ofthe palladium nanoparticle-coated carbon nanotube (PdNP/CNT) fiber microelectrode (left) and its amperometric response to hydrogen peroxide (H2O2) with different concentrations (right)  相似文献   

5.
Iron oxide microparticles were coated with 3-aminopropyltriethoxysilane and then coated with hemin via an amidation reaction. The resulting composite particles were characterized by transmission electron microscopy. FTIR spectroscopy revealed two bands (at 1,701 and 1,634 cm?1), which were assigned to the carboxy group and the amide linkage, respectively, resulting from the linkage between hemin and the amino-modified Fe3O4 particles. In addition, strong Fe-O vibrations can be observed at 563 cm?1. An electrode was modified with these microparticles and then showed a well-defined redox behavior of the immobilized hemin, with a fast heterogeneous electron transfer process (14.5 s?1). The electrode is capable of sensing both O2 and H2O2 and displays a wide linear range, high sensitivity, and fast response. The composites reported here also may serve as a support for the immobilization of proteins, which paves the way to potential applications in novel biosensors and bioelectronic devices.
Figure
Hemin was biografted onto the amine functionalized iron oxide microparticles. The composites modified electrode showed reproducible well-defined redox behavior of the attached hemin with a fast heterogeneous electron transfer process. The designed sensors for O2 and H2O2 showed good electrochemical performance, wide linear range, as well as high sensitivity and fast response.  相似文献   

6.
Lu Lu  Xirong Huang 《Mikrochimica acta》2011,175(1-2):151-157
We describe a facile electrochemical route for the synthesis of CuO flower-like microspheres (CuO FMs) by anodic dissolution of bulk Cu in sodium hydroxide solution at room temperature and without heating. Scanning electron microscopy and X-ray diffraction revealed that the CuO FMs are phase-pure monoclinic crystallites and comprised of CuO nanoflakes. The concentration of NaOH has a large effect on the size of the CuO FMs. The possible formation mechanism is discussed. The CuO FMs are electrocatalytically active towards the oxidation of H2O2, and this has resulted in a sensor for H2O2. To our knowledge, this is the simplest way to obtain clean CuO FMs.
Figure
A facile electrochemical route, which is carried out at room temperature (25?°C), is introduced for the fast fabrication of CuO flower-like microspheres (CuO FMs). The CuO FMs modified glassy carbon electrode exhibits good electrocatalytic activity towards the oxidation of H2O2.  相似文献   

7.
A nanohybrid composite material was prepared from single-walled carbon nanotubes and silver nanoparticles, and used to fabricate a modified carbon-ceramic electrode. The preparation of the composite is facile and efficient. The nanohybrid composite deposited on the carbon-ceramic electrode was characterized by X-ray diffraction and cyclic voltammetry. The new electrode displays favorable electrocatalytic ability towards hydrogen peroxide (H2O2) and can be used to electrocatalytically reduce this species. Under the optimum conditions, the current measured during hydrodynamic amperometry is linearly related to the concentration of H2O2 over the concentration range from 0.01 to 8 mM, with a detection limit of 2?×?10?7 M at a signal-to-noise ratio of 3 and sensitivity of 3.23 μA/mM. The electrode exhibits good reproducibility, long-term stability and negligible interference by dopamine, uric acid, and other important biological compounds. The electrode was successfully applied to the determination of H2O2 in honey samples, and the recovery was 101.2%.
Figure
CVs of bare CCE (a, a′) and SWCNT (b, b′) and SWCNT/AgNPs (c, c′) modified electrodes in phosphate buffer solution (0.1 M, pH 7.0) without and with 5 mM H2O2, respectively. Scan rate is 50 mVs?1.  相似文献   

8.
We report on a modified glassy carbon electrode (GCE) for sensing hydrogen peroxide (H2O2). It was constructed by consecutive electrochemical deposition of poly(anthranilic acid) and poly(diphenylamine sulfonate) on the GCE, followed by the deposition of copper oxide (CuO). The morphology and electrochemistry of the modified electrode was characterized by atomic force microscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The catalytic performance of the sensor was studied with the use of differential pulse voltammetry under optimized conditions. This sensor displayed significantly better electrocatalytic activity for the reduction of H2O2 in comparison to a GCE without or with modification with CuO or polymer films alone. The response to H2O2 is linear in the range between 0.005 to ~11 mM, and the detection limit is 0.18 μM (at an S/N of 3).
A new bio-mimetic sensor, CuO/PANA@PSDS/GCE, was prepared, it exhibited a better electrocatalytic activity toward the reduction of the H2O2 compared with that of the CuO/GCE, PANA@PSDS/GCE, and GCE. Its increased catalytic response was due to the polyaniline doped (PANA@PSDS) film, which enlarges the specific surface area of the electrode, and increases the loading of the CuO nano-particles.  相似文献   

9.
The reaction of hydrogen tetracholoroaurate, sodium borohydride and the diazonium compound prepared from 4-aminobenzoic acid results in the formation of gold nanocorals (Au-NCs) for the first time. Scanning electron microscopy images and transmission electron microscopy images show that the Au-NCs are composed of nanowires with a diameter of 5.3 nm. A glassy carbon electrode modified with Au-NCs is found to trigger intense electrochemiluminescence of the luminol/H2O2 system at a potential of ?0.13 V. The effect was exploited to determine H2O2 in the 0.1 to 100 μM concentration range with a 30 nM detection limit.
Figure
Gold nanocoral has been synthesized using diazonium salt chemistry for the first time. The Gold nanocoral-modified electrode show intense electrochemiluminescence at a low potential of ?0.13 V.  相似文献   

10.
We have prepared a sol–gel that incorporates Prussian Blue (PB) as a redox mediator. It is shown that the PB in the pores of the sol–gel retains its electrochemical activity and is protected from degradation at acidic and neutral pH values. TEM and EDX studies revealed the PB nanoparticles to possess a cubic crystal structure and to be well entrapped and uniformly dispersed in the pores of the matrix. The electrocatalytic activity of the materials toward hydrogen peroxide (H2O2) was studied by cyclic voltammetry and amperometry. The modified electrode displays good sensitivity for the electrocatalytic reduction of H2O2 both in acidic (pH 1.4) and neutral media. The sensor has a dynamic range from 3 to 210 μM of H2O2, and the detection limit is 0.6 μM (at an SNR of 3).
Figure
TEM micrograph of the Sol-gel–PB composite showing a large quantity of crystalline cubic nanoparticles uniformly distributed in the sol-gel matrix and electrocatalytic response of the Sol-gel–PB electrode for hydrogen peroxide.  相似文献   

11.
We report on a novel matrix of solgel organic–inorganic nanocomposite that was fabricated from silica sol gel and dextran. It was used for the immobilization of horseradish peroxidase (HRP) to give a biosensor for hydrogen peroxide (H2O2). The sensor film was characterized by Fourier transform infrared and UV–vis spectroscopy with respect to structural features and the conformation of the enzyme. The topographies of the surface of the electrode were investigated by field emission scanning electron microscopy. The biosensor was used to determine H2O2 quantitatively in the presence of Methylene blue as a mediator with high electron transfer efficiency. A pair of stable and well defined quasi-reversible redox peaks of the HRP [Fe (III)]/HRP [Fe (II)] redox couple was observed at pH 7.0. The biosensor responds to H2O2 in the 0.5 mM to 16.5 mM concentration range, and the limit of detection is 0.5 mM.
Figure
A synthesized novel silica-dextran nanocomposite provides three dimensional interfaces for immobilization of HRP which maintains the characteristic structure and enhances the catalytic activity.  相似文献   

12.
We report on a nano-array sensor for hydrogen peroxide (H2O2) that is based on a nanoporous anodic aluminum oxide template. This was used as a matrix for the co-immobilization of horseradish peroxidase (HRP) and methylene blue (MB) on the surface of an indium tin oxide electrode. The immobilized HRP retained its natural activity and MB is capable of efficiently shuttle electrons between HRP and the electrode. The new electrode was characterized by SEM and electrochemical methods. It exhibits fast response, long-term stability, high sensitivity and good selectivity to H2O2. Under optimized conditions, it linearly responds to H2O2 in the concentration range from 1.0?μM to 26?mM, with a detection limit of 0.21?μM (at S/N?=?3).
Figure
A nano-array biosensor for hydrogen peroxide (H2O2) based on the co-electrodeposition of horseradish peroxidase (HRP) and methylene blue (MB) into anodic aluminum oxide template was constructed. The immobilized HRP could maintain natural bioactivity and MB could efficiently shuttle electrons between HRP and the electrode.  相似文献   

13.
This paper describes a reliable and sensitive method for sensing dissolved acetone using doped nanomaterials. Large-scale synthesis of ZnO nanorods (NRs) doped with Co3O4 was accomplished by a solvothermal method at low temperature. The doped NRs were characterized in terms of their morphological, structural, and optical properties by using field-emission scanning electron microscopy coupled with energy-dispersive system, UV-Vis., Fourier transform IR, X-ray diffraction, and Xray photoelectron spectroscopy. The calcinated (at 400 °C) doped NRs are shown to be an attractive semiconductor nanomaterial for detecting acetone in aqueous solution using silver electrodes. The sensor exhibits excellent sensitivity, stability and reproducibility. The calibration plot is linear over a large concentration range (66.8 μM to 0.133 mM), displays high sensitivity (~3.58 μA cm?2 mM?1) and a low detection limit (~14.7?±?0.2 μM; at SNR of 3).
Figure
The present study describes a simple, reliable, accurate, sensitive, and cost effective method for the detection of acetone using solvothermally prepared semiconductor co-doped nanomaterials.  相似文献   

14.
We have prepared a novel sensor for hydrogen peroxide that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes wired to CuO nanoflowers. The nanoflowers were characterized by X-ray powder diffraction, and the electrode was characterized by cyclic voltammetry (CV) and scanning electron microscopy. The response of the modified electrode towards hydrogen peroxide was investigated by CV and chronoamperometry and showed it to exhibit high electrocatalytic activity, with a linear range from 0.5?μM to 82?μM and a detection limit of 0.16?μM. The sensor also displays excellent selectivity and stability.
Graphical abstract
We have prepared a novel sensor for hydrogen peroxide (H2O2) that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes (MWCNTs) wired to CuO nanoflowers. The scheme shows the construction of the MWCNTs-wired CuO nanoflowers modified electrode and electrocatalytic activity towards H2O2. When H2O2 was added, the cathodic peak current of the CuO-MWCNTs/GCE remarkably increased while its anodic peak current obviously decreased. By increasing the concentration of H2O2, the cathodic peak current further increased while its anodic peak current further decreased. Indicating CuO-MWCNTs/GCE has a remarkable electrocatalytic activity for H2O2. The scheme. The construction of the MWCNTs-wired CuO nanoflowers modified electrode and electrocatalytic activity towards H2O2  相似文献   

15.
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode (GCE). The electron mediator carboxyferrocene was also immobilized on the surface of the GCE. UV?Cvis spectra, Fourier transform IR spectra, scanning electron microscopy, and electrochemical impedance spectra were acquired to characterize the biosensor. The experimental conditions were studied and optimized. The biosensor responds linearly to H2O2 in the range from 1.0?×?10?5 to 2.0?×?10?3?M and with a detection limit of 2.0?×?10?6?M (at S/N?=?3).
Figure
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode.  相似文献   

16.
We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H2O2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoOxNPs or graphene sheets only, the new electrode displays larger oxidative current response to H2O2, probably due to the synergistic effects between the graphene sheets and the CoOxNPs. The sensor responds to H2O2 with a sensitivity of 148.6 μA mM?1 cm?2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H2O2 in hydrogen peroxide samples.
Figure
A highly sensitive H2O2 sensor using a glassy carbon electrode modified with cobalt oxide nanoparticles/electrochemical reduced graphene oxide (CoOxNPs/ERGO) hybrids is presented.  相似文献   

17.
A sensor for hydrogen peroxide is described that is based on an indium tin oxide electrode modified with Fe3O4 magnetic nanoparticles which act as a mimic for the enzyme peroxidase and greatly improve the analytical performance of the sensor. The amperometric current is linearly related to the concentration of H2O2 in the range from 0.2 mM to 2 mM, the regression equation is y?=?-0.5–1.82x, the correlation coefficient is 0.998 (n?=?3), and the detection limit is 0.01 mM (S/N?=?3). The sensor exhibits favorable selectivity and excellent stability.
Figure
Using the peroxidase mimic property of Fe3O4 magnetic nanoparticles (MNPs), a sensitive electrochemical method with favorable analytical performance for the determination of hydrogen peroxide (H2O2) was developed.  相似文献   

18.
A glassy carbon electrode was modified with PdO-NiO composite nanofibers (PdO-NiO-NFs) and applied to the electrocatalytic reduction of hydrogen peroxide (H2O2). The PdO-NiO-NFs were synthesized by electrospinning and subsequent thermal treatment, and then characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Factors such as the composition and fraction of nanofibers, and of the applied potential were also studied. The sensor exhibits high sensitivity for H2O2 (583.43 μA?·?mM?1?·?cm?2), a wide linear range (from 5.0 μM to 19 mM), a low detection limit (2.94 μM at an SNR of 3), good long term stability, and is resistant to fouling.
Figure
A glassy carbon electrode was modified with PdO-NiO composite nanofibers which were synthesized by electrospinning and subsequent thermal treatment. The sensor exhibited a wide linear range, high sensitivity, good stability and selectivity for the detection of hydrogen peroxide  相似文献   

19.
We report on a non-enzymatic amperometric sensor for hydrogen peroxide (H2O2). It was fabricated by electrodeposition of multi-wall carbon nanotubes and polyaniline along with platinum nanoparticles on the surface of a glassy carbon electrode. The modification was probed by scanning electron microscopy and cyclic voltammetry. The resulting sensor exhibits a high sensitivity (748.4?μA·mM?1·cm?2), a wide linear range (7.0?μM–2.5?mM), a low detection limit (2.0?μM) (S/N?=?3), a short response time (>5?s), and long-term stability, and is not interfered by common species. It was successfully applied to determine H2O2 in disinfectants.
Figure
SEM images of the obtained Pt/MWCNTs-PANI composite films with large surface-to-volume ratio and biocompatibility  相似文献   

20.
Highly dispersed gold nanoparticles (AuNPs) were introduced into a hierarchically porous zeolite of the MFI type that contains mesopores and an inherently microporous structure. These represent a novel matrix for the immobilization of biomolecules. The composites were characterized by FTIR, X-ray diffraction, UV–vis spectroscopy, transmission electron microscopy, nitrogen sorption measurements, and electrochemical impedance spectroscopy. The crystallinity and morphology of the zeolite is not compromised by incorporating the AuNPs with their size of 3–20 nm. A sensor for hydrogen peroxide (H2O2) was fabricated by incorporating hemoglobin into the matrix and placing it on the surface of a glassy carbon electrode. The resulting biosensor exhibits excellent bioelectrocatalytic capability for the reduction of H2O2. The amperometric response at ?0.4 V linearly depends on H2O2 in the 1.0 μM to 18 mM concentration range. The detection limit is 0.8 μM (at an S/N of 3). Its good sensitivity, stability and reproducibility make the modified hierarchically porous zeolite a promising new matrix material for protein immobilization and the construction of biosensors.
Figure
Amperometric responses of Hb/Au-MFIOH/GCE upon successive additions of different concentrations of H2O2 to 0.1 M pH 7.0 phosphate buffer solution at applied potential of ?0.4 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号