首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the set of numerical semigroups containing a given numerical semigroup. As an application we prove characterizations of irreducible numerical semigroups that unify some of the existing characterizations for symmetric and pseudo-symmetric numerical semigroups. Finally we describe an algorithm for computing a minimal decomposition of a numerical semigroup in terms of irreducible numerical semigroups.  相似文献   

2.
Abstract. We study the set of numerical semigroups containing a given numerical semigroup. As an application we prove characterizations of irreducible numerical semigroups that unify some of the existing characterizations for symmetric and pseudo-symmetric numerical semigroups. Finally we describe an algorithm for computing a minimal decomposition of a numerical semigroup in terms of irreducible numerical semigroups.  相似文献   

3.
Block numerical ranges of matrix polynomials, especially the quadratic numerical range, are considered. The main results concern spectral inclusion, boundedness of the block numerical range, an estimate of the resolvent in terms of the quadratic numerical range, geometrical properties of the quadratic numerical range, and inclusion between block numerical ranges of the matrix polynomials for refined block decompositions. As an application, we connect the quadratic numerical range with the localization of the spectrum of matrix polynomials.  相似文献   

4.
Error analysis of the numerical solution of split differential equations   总被引:1,自引:0,他引:1  
The operator splitting method is a widely used approach for solving partial differential equations describing physical processes. Its application usually requires the use of certain numerical methods in order to solve the different split sub-problems. The error analysis of such a numerical approach is a complex task. In the present paper we show that an interaction error appears in the numerical solution when an operator splitting procedure is applied together with a lower-order numerical method. The effect of the interaction error is investigated by an analytical study and by numerical experiments made for a test problem.  相似文献   

5.
Given any scheme in conservation form and an appropriate uniform grid for the numerical solution of the initial value problem for one-dimensional hyperbolic conservation laws we describe a multiresolution algorithm that approximates this numerical solution to a prescribed tolerance in an efficient manner. To do so we consider the grid-averages of the numerical solution for a hierarchy of nested diadic grids in which the given grid is the finest, and introduce an equivalent multiresolution representation. The multiresolution representation of the numerical solution consists of its grid-averages for the coarsest grid and the set of errors in predicting the grid-averages of each level of resolution in this hierarchy from those of the next coarser one. Once the numerical solution is resolved to our satisfaction in a certain locality of some grid, then the prediction errors there are small for this particular grid and all finer ones; this enables us to compress data by setting to zero small components of the representation which fall below a prescribed tolerance. Therefore instead of computing the time-evolution of the numerical solution on the given grid we compute the time-evolution of its compressed multiresolution representation. Algorithmically this amounts to computing the numerical fluxes of the given scheme at the points of the given grid by a hierarchical algorithm which starts with the computation of these numerical fluxes at the points of the coarsest grid and then proceeds through diadic refinements to the given grid. At each step of refinement we add the values of the numerical flux at the center of the coarser cells. The information in the multiresolution representation of the numerical solution is used to determine whether the solution is locally well-resolved. When this is the case we replace the costly exact value of the numerical flux with an accurate enough approximate value which is obtained by an inexpensive interpolation from the coarser grid. The computational efficiency of this multiresolution algorithm is proportional to the rate of data compression (for a prescribed level of tolerance) that can be achieved for the numerical solution of the given scheme.  相似文献   

6.
We consider numerical one-step approximations of ordinary differentialequations and present two results on the persistence of attractorsappearing in the numerical system. First, we show that the upperlimit of a sequence of numerical attractors for a sequence ofvanishing time-steps is an attractor for the approximated systemif and only if for all these time-steps the numerical one-stepschemes admit attracting sets which approximate this upper limitset and attract with a uniform rate. Second, we show that ifthese numerical attractors themselves attract with a uniformrate, then they converge to some set if and only if this setis an attractor for the approximated system. In this case, wecan also give an estimate for the rate of convergence dependingon the rate of attraction and on the order of the numericalscheme.  相似文献   

7.
The numerical range of an operator on an indefinite inner product space (possibly infinite dimensional) is studied. In particular, operators having bounded numerical ranges are characterized, and the angle points of the numerical range and their connections with eigenvalues are described.

  相似文献   


8.
In this report, we give a semi‐discrete defect correction finite element method for the unsteady incompressible magnetohydrodynamics equations. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear magnetohydrodynamics equations is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect‐correction technique. Then, we give the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. In order to show the effect of our method, some numerical results are shown. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
This article studies a numerical solution method for a special class of continuous time linear programming problems denoted by (SP). We will present an efficient method for finding numerical solutions of (SP). The presented method is a discrete approximation algorithm, however, the main work of computing a numerical solution in our method is only to solve finite linear programming problems by using recurrence relations. By our constructive manner, we provide a computational procedure which would yield an error bound introduced by the numerical approximation. We also demonstrate that the searched approximate solutions weakly converge to an optimal solution. Some numerical examples are given to illustrate the provided procedure.  相似文献   

10.
In this article we prove that if S is an irreducible numerical semigroup and S is generated by an interval or S has multiplicity 3 or 4, then it enjoys Toms decomposition. We also prove that if a numerical semigroup can be expressed as an expansion of a numerical semigroup generated by an interval, then it is irreducible and has Toms decomposition.  相似文献   

11.
We present a simple and fast explicit hybrid numerical scheme for the motion by mean curvature on curved surfaces in three-dimensional (3D) space. We numerically solve the Allen-Cahn (AC) and conservative Allen-Cahn (CAC) equations on a triangular surface mesh. We use the operator splitting method and an explicit hybrid numerical method. For the AC equation, we solve the diffusion term using a discrete Laplace-Beltrami operator on the triangular surface mesh and solve the reaction term using the closed-form solution, which is obtained using the separation of variables. Next, for the CAC equation, we additionally solve the time-space dependent Lagrange multiplier using an explicit scheme. Our numerical scheme is computationally fast and efficient because we use an explicit hybrid numerical scheme. We perform various numerical experiments to demonstrate the robustness and efficiency of the proposed scheme.  相似文献   

12.
In this article, tracial numerical ranges associated with matrices in an indefinite inner product space are investigated. The boundary equations of these sets are obtained, and the case of the boundary being a polygon is studied. As an application, a numerical algorithm for plotting the tracial numerical range of an arbitrary complex matrix is presented. Our approach uses the elementary idea that the boundary may be traced by computing the supporting lines.  相似文献   

13.
In this paper, parameter-uniform numerical methods for a class of singularly perturbed parabolic partial differential equations with two small parameters on a rectangular domain are studied. Parameter-explicit theoretical bounds on the derivatives of the solutions are derived. The solution is decomposed into a sum of regular and singular components. A numerical algorithm based on an upwind finite difference operator and an appropriate piecewise uniform mesh is constructed. Parameter-uniform error bounds for the numerical approximations are established. Numerical results are given to illustrate the parameter-uniform convergence of the numerical approximations.

  相似文献   


14.
Huang  I-Chiau  Jafari  Raheleh 《Semigroup Forum》2021,103(3):899-915

Numerical semigroup rings are investigated from the relative viewpoint. It is known that algebraic properties such as singularities of a numerical semigroup ring are properties of a flat numerical semigroup algebra. In this paper, we show that arithmetic and set-theoretic properties of a numerical semigroup ring are properties of an equi-gcd numerical semigroup algebra.

  相似文献   

15.
In this work adaptive and high resolution numerical discretization techniques are demonstrated for solving optimal control of the monodomain equations in cardiac electrophysiology. A monodomain model, which is a well established model for describing the wave propagation of the action potential in the cardiac tissue, will be employed for the numerical experiments. The optimal control problem is considered as a PDE constrained optimization problem. We present an optimal control formulation for the monodomain equations with an extra-cellular current as the control variable which must be determined in such a way that excitations of the transmembrane voltage are damped in an optimal manner.The focus of this work is on the development and implementation of an efficient numerical technique to solve an optimal control problem related to a reaction-diffusions system arising in cardiac electrophysiology. Specifically a Newton-type method for the monodomain model is developed. The numerical treatment is enhanced by using a second order time stepping method and adaptive grid refinement techniques. The numerical results clearly show that super-linear convergence is achieved in practice.  相似文献   

16.
We analyze an ideal transmission line, which is defined by the telegraph equation with variable coefficients, from the perspectives of numerical analysis and control theory in this note. Because the spatially semi-discrete scheme of the original system is insufficient for discussing uniform exponential stability, we apply a similar transform to the continuous system and produce an intermediate system that may be easily analyzed. To begin, we discuss uniform exponential stability for the intermediate system using an so called average central-difference semi-discrete scheme and the direct Lyapunov function approach. The proof is the same as in the continuous case. The Trotter-Kato Theorem is used to demonstrate the stability and consistency of numerical approximation scheme. Finally, we propose a semi-discrete strategy for the original system through an inverse transform. All results on intermediate system are then translated into the original system. The numerical state reconstruction problem is addressed as an essential application of the main results. Furthermore, several numerical simulations are used to validate the effectiveness of the numerical approximating algorithms.  相似文献   

17.
We propose a numerical algorithm for simulating steady laminar flows of an incompressible fluid in annular channels with eccentricity and rotation of the inner cylinder. This algorithm enables us to describe this class of flows for wide ranges of the annular channel and flow parameters. We present the implementation details and the results of testing this numerical method. For a series of flows in an annular clearance, we compare the numerical results to available analytic solutions and experimental data. In all cases under consideration the simulated data agree well with the available experimental, analytical, and numerical solutions.  相似文献   

18.
In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.  相似文献   

19.
In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.  相似文献   

20.
In this work, an analytical approximation to the solution of Schrodinger equation has been provided. The fractional derivative used in this equation is the Caputo derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on the power law. While solving the fractional order Schrodinger equation, Atangana–Batogna numerical method is presented for fractional order equation. We obtain an efficient recurrence relation for solving these kinds of equations. To illustrate the usefulness of the numerical scheme, the numerical simulations are presented. The results show that the numerical scheme is very effective and simple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号