首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In this paper we aimed at investigating the flux pinning property of MgB2 films on hastelloy tapes which are buffered on various thicknesses of SiC layers. We have observed that the increase in thickness of the SiC buffer layer is very closely related with the systematic improvement of the field dependence of the critical current densities (Jc) of MgB2 tapes while the values of Jc decreased. According to the analysis of the pinning force density (Fp), there exist two pinning sources both in the pure MgB2 and in the MgB2 film with the thinnest SiC buffer layer. On the while, the pinning source observed in the MgB2 films with thicker SiC buffer layers appears to be different from those previously mentioned. The different pinning behaviors of MgB2 films may suggest that there be an additional pinning center working on the MgB2 films with thick SiC buffer layers. The microstructural analyses of MgB2 films confirmed that intra-granular defects and columnar grain boundaries may be a dominant pinning mechanism in the pure MgB2 and the MgB2 film with 170 nm-thick SiC buffer layer. For the MgB2 films with thicker SiC buffer layers, carbon diffusion into the MgB2 film, which is defined by the Auger electron spectroscopy, may be the origin of the additional pinning mechanism.  相似文献   

2.
In pulsed laser deposition of YBa2Cu3O7?δ films, defect introduction into the films tends to anisotropically improve the pinning along the H||c direction due to the columnar growth mode of the process. In Eu-substituted samples, however, even though an increase in critical current density (Jc) in the H||c direction was observed for low fields (H = 0.2 T), the improvement was more notable for the H||ab-plane at both low and higher fields. Herein we present detailed TEM microstructural studies to understand these new trends in Jc(H), which are markedly different than flux pinning increases achieved with other methods, for example, with nanoparticle additions. Threading dislocations, observed in the Eu-substituted samples along the c-axis, account for Jc enhancement with H||c at low field. The enhanced ab-planar pinning in the Eu-substituted samples is attributed to the extensive bending of the {0 0 1} lattice planes throughout the film, and the crystal lattice defects with excess Cu–O planes, that were effective in increasing the Jc for H||ab at both low and high fields.  相似文献   

3.
We report the effects of BSO addition on the crystallinity, texture, and the field dependency of critical current density (Jc) of GdBCO coated conductors (CCs) prepared by pulsed laser deposition (PLD). Undoped and BSO-doped GdBCO films showed only c-axis oriented growth, and the incorporated BSO nanorods exhibited epitaxial relationship with the GdBCO matrix. In comparison with undoped film, BSO-doped GdBCO film exhibited greatly enhanced Jc and higher pinning force densities in the entire field region of 0–5 T (H//c) at 77 and 65 K. The BSO-doped GdBCO film showed the maximum pinning force densities (Fp) of 6.5 GN/m3 (77 K, H//c) and 32.5 GN/m3 (65 K, H//c), ~2.8 times higher than those of the undoped sample. Cross-sectional TEM analyses exhibited nano-structured BSO nanorods roughly aligned along the c-axis of the GdBCO film, which are believed effective flux pinning centers responsible for strongly improved critical current densities in magnetic fields.  相似文献   

4.
Numerous experimental results have suggested that the Jc of YBa2Cu3O7 (YBCO) films is significantly higher near the film–substrate interface than in the remainder of the film. We previously proposed that this effect is due to interfacial pinning enhancement caused by stress and the resulting misfit dislocations at the heteroepitaxial interface. To test this hypothesis we have used a non-superconducting PrBa2Cu3O7?δ (PrBCO) buffer layer to minimize the lattice mismatch with YBCO. We find that the PrBCO layers lower Jc of the 0.4 μm YBCO films in a predictable way, and that, if sufficiently thick (~0.5 μm), they eliminate interfacial enhancement altogether. Our interpretation of this result is that the defects responsible for interfacial enhancement of flux pinning originate at the bottom of the non-superconducting PrBCO layer, which screens the pinning centers from vortices in YBCO. This result demonstrates that the pinning enhancement arises from stress at the film–substrate interface.  相似文献   

5.
We investigated the influence of surface damage on the critical current density (Jc) of MgB2 thin films via 140-keV Co-ion irradiation. The Jc(H) of the surface-damaged MgB2 films was remarkably improved in comparison with that of pristine films. The strong enhancement of Jc(H) caused by a surface damage in MgB2 films can be ascribed to additional point defects along with an atomic lattice displacement introduced through low-energy Co-ion irradiation, which is consistent with the change in the pinning mechanism, from weak collective pinning to strong plastic pinning. The irreversible magnetic field (Hirr) at 5 K for surface-damaged MgB2 films with a thickness of 850 and 1300 nm was increased by a factor of approximately 2 compared with that of a pristine film. These results show that the surface damage produced by low energy ion irradiation can serve as an effective pinning source to improve Jc(H) in a MgB2 superconductor.  相似文献   

6.
The stoichiometry dependence of the microstructure and superconducting properties of pure and nano-SiC doped MgB2/Fe tapes was systematically investigated. The tapes prepared with the composition of a slight deficiency of Mg (Mg0.9B2 and MgxB2(SiC)0.1 (x = 0.9 and 1.0)) showed the best transport Jc. Adding a slight excess of Mg like 5%, as being done by many researchers, was not beneficial for the Jc improvement as expected. The onset Tc was not significantly changed in both doped and undoped tapes by adding excess of boron or magnesium, but the transition widths were broadened due to the induced impurities. The slightly-Mg-deficient pure samples show smaller grain sizes, which corresponds to a better JcB performance at high magnetic field due to the enhanced grain boundary pinning. The field dependence of Jc in nano-SiC doped tapes was almost not influenced by varying the starting Mg content although microstructural difference can still be seen, suggesting that the flux pinning ability was mainly controlled by the carbon substitution effect for boron.  相似文献   

7.
We have reported SmBa2Cu3Oy (SmBCO) films on single crystalline substrates prepared by low-temperature growth (LTG) technique. The LTG-SmBCO films showed high critical current densities in magnetic fields compared with conventional SmBCO films prepared by pulsed laser deposition (PLD) method. In this study, to enhance critical current (Ic) in magnetic field, we fabricated thick LTG-SmBCO films on metal substrates with ion-beam assisted deposition (IBAD)-MgO buffer and estimated the Ic and Jc in magnetic fields.All the SmBCO films showed c-axis orientation and cube-on-cube in-plane texture. Tc of the LTG-SmBCO films were 93.1–93.4 K. Jc and Ic of a 0.5 μm-thick SmBCO film were 3.0 MA/cm2 and 150 A/cm-width at 77 K in self-field, respectively. Those of a 2.0 μm-thick film were 1.6 MA/cm2 and 284 A/cm-width respectively. Although Ic increased with the film thickness increasing up to 2 μm, the Ic tended to be saturated in 300 A/cm-width. From a cross sectional TEM image of the SmBCO film, we recognized a-axis oriented grains and 45° grains and Cu–O precipitates. Because these undesired grains form dead layers, Ic saturated above a certain thickness. We achieved that Ic in magnetic fields of the LTG-SmBCO films with a thickness of 2.0 μm were 88 A/cm-width at 1 T and 28 A/cm-width at 3 T.  相似文献   

8.
YBa2Cu3O7?x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature (T) and magnetic field (H) ranges and by transmission electron microscopy (TEM). The critical current density Jc was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of Jc on c-axis pin spacing dc. At low T and H, Jc increased with decreasing dc, reaching the very high Jc  48 MA/cm2 ~20% of the depairing current density Jd at 10 K, self-field and dc  10 nm, but at higher T and H when TAD effects become significant, Jc was optimized at larger dc because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields Hirr(77 K) greater than 7 T and maximum bulk pinning forces Fp,max(77 K) greater than 7–8 GN/m3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes Jc at all T and H.  相似文献   

9.
《Current Applied Physics》2018,18(6):762-766
We report a facile method to enhance the critical current density (Jc) of superconducting MgB2 thin films. MgB2 thin films were deposited on zinc acetate dehydrate (Zn(CH3COO)22H2O) spin-coated Al2O3 (000l) substrates by using a hybrid physical-chemical vapor deposition system at low temperatures. Synthesis of MgB2 at low temperatures can reduce the substitution of Zn into the Mg site, hence avoiding the reduction of superconducting critical temperature. MgB2 thin films grown on ZnO-buffered layers showed a significant enhancement of Jc in the magnetic field due to the creation of additional pinning sources, namely point defects and grain boundaries. Broad peaks were observed in the magnetic field dependence of the flux pinning force density, indicating competition of different pinning sources.  相似文献   

10.
We studied the flux pinning properties by grain boundaries in MgB2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities (Jcs) and reduced resistances when an external magnetic field (B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank–Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.  相似文献   

11.
The nanoparticle–MgB2 composite superconducting sample, (SiC)4wt.%(MgB2)96wt.% ((SiC)4–MgB2), was prepared, and the effect of nanoparticle additions on the magnetic flux pinning was investigated. The measurement and comparison of isothermal magnetization M(H), for pure-MgB2 powder and sintered pellets of (SiC)4–MgB2 and pure-MgB2 were carried out at temperatures between 5 and 50 K in fields up to 8.5 T. The magnetic irreversibility ΔM(H) curves of the (SiC)4–MgB2 follow almost identical lines of both pure-MgB2 powder and sintered bulk MgB2 in the region above a specific magnetic field (called a merged field), which gradually decreases as the temperature increases. The (SiC)4–MgB2 composite superconductor has exhibited the flux pinning effect which comes from both the grain boundaries and the point defect weak pinning centers in the region below the merged field line. This is different from the case of pure-MgB2 powder and sintered bulk MgB2 which showed mostly the grain boundaries pinning.  相似文献   

12.
The YBCO films with BaSnO3 (BSO) particles were prepared on LAO (0 0 1) substrates by metal organic deposition using trifluoroacetates (TFA-MOD) via introducing SnCl4 powders into the YBCO precursor solution. It was found that with the increase of the SnCl4 contents, the slower decomposition and higher temperature for nucleation during the reaction were requested compared to that of pure YBCO film. The YBCO films with different contents of Sn with dense surface and well c-alignment were obtained under optimized heat treatment, and the BaSnO3 phases were detected by XRD analysis. Litter effect of BSO particles on the Tc and Jc values of YBCO films was found. All YBCO films with BSO particles had Tc values over 90 K and Jc values over 1 MA/cm2. A significant enhancement of Jc was observed for YBCO films with BSO particles compared to that of pure YBCO film by the field dependence of Jc values. The best property was obtained for YBCO film with 6 mol.% Sn at 77 K under magnetic field. The results showed that the Jc value of YBCO film with 6 mol.% Sn was enhanced by a factor of 2 in 2 T, and over a factor of 10 beyond 4 T compared to that of pure YBCO film.  相似文献   

13.
Nanoscale Co3O4 particles were doped into MgB2 tapes with the aim of developing superconducting wires with high-current-carrying capacity. Fe-sheathed MgB2 tapes with a mono-core were prepared using the in situ powder-in-tube (PIT) process with the addition of 0.2–1.0 mol% Co3O4. The critical temperature decreased monotonically with an increasing amount of doped Co3O4 particles for all heat-treatment temperatures from 600 to 900 °C. However, the transport critical current density (Jc) at 4.2 K varied with the heat-treatment temperatures. The Jc values in magnetic fields ranging from 7 to 12 T decreased monotonically with increasing Co3O4 doping level for a heat-treatment temperature of 600 °C. In contrast, some improvements on the Jc values of the Co3O4 doped tapes were observed in the magnetic fields below 10 T for 700 and 800 °C. Furthermore, Jc values in all the fields measured increased as the Co3O4 doping level increase from 0 to 1 mol% for 900 °C. This heat-treatment temperature dependence of the Jc values could be explained in terms of the heat-treatment temperature dependence of the irreversibility field with Co3O4 doping.  相似文献   

14.
The properties of discontinuous aligned pinning centers (PCs) created by high-energy heavy-ions are compared for bulk melt-textured and coated conductor HTS. Properties of PCs, which increase Jc (pinning potential and entanglement), and negative properties which decrease Jc (e.g., decreased Tc and percolation paths) are evaluated. Mechanisms are proposed to explain the very large increases in Jc resulting from multiple-in-line-damage (MILD) compared to continuous columnar pinning centers (CCPC). In particular, a mechanism which results in fluxoid entanglement, even for parallel (unsplayed) PCs, is discussed. The same mechanism is found to also account for restoration of much of the pinning potential expected to be lost due to the gaps in MILD PCs. It also accounts for the fact that at high fluence, Jc increases as fluence is increased, instead of decreasing as expected. The very low self-field in coated conductor permits separation of the negative and positive effects of PCs. It is found that parameters developed to quantify the negative effects in bulk melt-textured YBCO, by 63 GeV U238 ions, successfully describe damage to 2.1 μm thick coated conductor by 1 GeV Ru44 ions. Coated conductor at 77 K and self-field is generally known to have Jc about 100 times that of melt-textured YBCO. However, at 77 K and applied field of 1 T, when both forms of HTS are processed with comparable numbers of near-optimum MILD PCs, the difference in Jc is reduced to a factor of 1.3–2. Whereas Jc for melt-textured YBCO increased sharply, by a factor of up to 16.8 for high-fluence MILD PCs, Jc in coated conductor increased by a smaller factor of 2.5–3.0. Nevertheless, 2.1 μm thick coated conductor, with near-optimum MILD PCs, exhibits Jc = 543 kA/cm2 at 77 K and applied field of 1.0 T, and Ic = 114 A/cm-width of conductor. This is the highest value we find in the literature. The phenomenology developed indicates that for optimum MILD PCs in coated conductor, Jc  700 ± 70 kA/cm2 should be achievable at 77 K, 1.0 T.  相似文献   

15.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

16.
Y1?xHoxBa2Cu3O7?δ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) thin films were prepared on LaAlO3 (0 0 1) substrates by trifluoroacetate metal organic deposition (TFA-MOD) without change of the processing parameters. The highest Jc was attributed to the sample of Y0.6Ho0.4Ba2Cu3O7?δ thin film, whose critical current density is about 1.6 times as compared to that of YBa2Cu3O7?δ thin film at 77 K and self field. The flux pinning type was not varied with Ho substitution and can be attributed to δl pinning model, which is attributed to the close ionic radius between the Y3+ and Ho3+ ions. The improvement of Jc by Ho substitution without change of the processing parameters will provide an effective route to enhance the Jc of YBCO-based thin films using TFA-MOD method.  相似文献   

17.
CuBa2Ca3Cu4O12−y (Cu:1234) high-temperature superconductors (HTS) doped with up to 2% Zn were grown using the high-pressure synthesis technique. Magnetization loops of the samples were measured at various temperatures between 5 and 77.3 K and magnetic fields up to 14 T. Critical current densities Jc of the samples were estimated using the critical state model. The results show that Zn-induced pinning centers increase Jc of Cu:1234 several times, depending on field and temperature. From the experimentally determined field-temperature region in which a higher Zn concentration lead to a higher Jc, we suggest the existence of a cross-over from quite efficient, extended (in the c-axes direction) pinning centers to point-like (inefficient) pinning centers at a certain temperature, depending on field. This effect can be attributed to the fact that, unlike other HTS, in Cu:1234 there is a second critical temperature Tc2 of about 70–80 K (in zero field, and 50–60 K in 15 T), related to the over-doping of pyramidal basal plane (outer CuO2 plane).  相似文献   

18.
We measured the transport properties of MgB2 films having columnar grain structure with their axis normal to the substrate. When an external magnetic field was applied parallel to the grain axis, an enhanced critical current density has been observed, and this result has been ascribed to flux pinning induced by grain boundaries. The shape of the angular dependence of critical current density and its magnetic field dependence showed a quite similar resemblance to those of YBa2Cu3Ox films containing columnar defects, implying a possible existence of linear defects in MgB2 films of columnar structure. We propose that the amorphous regions at the vertex points of three or more grain boundaries observed in microstructural studies correspond to the linear defects and these linear defects anchor the end points of the flux line dislocations of Frank-Read sources, by which the shear in the flux line lattice is actuated. This assumed mechanism is found to reasonably explain the magnetic field dependence of the flux pinning force density of MgB2 films with columnar grain structure.  相似文献   

19.
Recent results in a systematic study of the stability of supercurrents in Bi-2212 tapes with randomly oriented, highly splayed columnar defects are presented as a function of defect density. The defects were artificially created by fission fragments of bismuth nuclei, fissioned by irradiation with energetic protons (∼0.8 GeV). Significant enhancements in the persistent current density Jpare observed at all temperatures and fields. Also, a marked shift of the irreversibility line towards higher fields and temperatures improves considerably the capacity of the material for practical applications. Moreover, a significant decrease in the logarithmic decay rate S = dln (Jp) /dln(t) indicates a strong stabilization of the persistent currents. All features point to high effectiveness of this artificial pinning mechanism. However, the optimal proton fluence needs yet to be established.  相似文献   

20.
Crystalline defects on the nano-scale were successfully introduced into YBCO high-temperature superconductors (HTS) by ZrO2 nanometer particles addition in order to strongly pin the quantized vortices. Three batches of ZrO2 nano-particles with different particle size distributions were used. The corresponding mean nano-particle diameters are respectively, 287, 536 and 764 nm. Serving as artificial pinning centers (APC), non-superconducting nano-particles cause a remarkable enhancement of critical current density (Jc) at T = 77 K. This improvement has been shown to depend on the size of APC. The pinning strength of nano-particles inclusions has been found to be greater with wide size dispersed nano-particles. Our results indicate that pinning properties and vortex dynamics depend on the size of APCs. The introduction of APCs with controlled size is indispensable to achieve a high Jc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号