首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The samples of YBa3B9O18, LuBa3(BO3)3, α-YBa3(BO3)3 and LuBO3 powders have been synthesized by the solid-state reaction methods at high temperature and their X-ray excited luminescent properties were investigated. All the studied materials show a broad emission band in the wavelength range of 300-550 nm with the peak centers at about 385 nm for YBa3B9O18 and LuBa3(BO3)3, 415 nm for α-YBa3(BO3)3 and 360 nm for LuBO3 powders, respectively. Even though those compounds have the different atomic structures, they have the common structural feature of each yttrium or lutetium ion bonded to six separate BO3 groups, i.e., octahedral RE(BO3)6 (RE=Lu or Y) moiety. This octahedral RE(BO3)6(RE=Lu or Y) moiety seems to be an important structural element for efficient X-ray excited luminescence of those compounds, as are the edge-sharing octahedral TaO6 chains for tantalate emission.  相似文献   

2.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

3.
By replacing Mn in YCa3(MnO)3(BO3)4 with trivalent Al and Ga, two new borates with the compositions of YCa3(MO)3(BO3)4 (M=Al, Ga) were prepared by solid-state reaction. Structure refinements from X-ray powder diffraction data revealed that both of them are isostructural to gaudefroyite with a hexagonal space group P63/m. Cell parameters of a=10.38775(13)Å, c=5.69198(10)Å for the Al-containing compound and a=10.5167(3)Å, c=5.8146(2)Å for the Ga analog were obtained from the refinements. The structure is constituted of AlO6 or GaO6 octahedral chains interconnected by BO3 groups in the ab plane to form a Kagomé-type lattice, leaving trigonal and apatite-like tunnels. It is found that most rare-earth and Cr, Mn ions can be substituted into the Y3+ and M3+ sites, respectively, and the preference of rare-earth ions to locate in the trigonal tunnel is correlated to the sizes of the M3+ ions.  相似文献   

4.
This study concerns the coprecipitation of the PbCO3SrCO3 and PbCO3CaCO3 systems in different molar relationships carried out under the same experimental conditions as the PbCO3BaCO3 system studied previously. The precipitates obtained were studied by chemical analysis, thermogravimetry, differential thermal analysis and X-ray powder diffraction. It has been established that, for the PbCO3SrCO3 system, solid solutions are obtained under all the different experimental conditions and for the PbCO3CaCO3 system the precipitates obtained are always mixtures of PbCO3 and CaCO3.  相似文献   

5.
Four definite compounds exist in the Sm2O3Ga2O3 binary phase diagram, namely: Sm3GaO6, Sm4Ga2O9, SmGaO3, and Sm3Ga5O12. The 31 compound is orthorhombic (space group Pnna - Z.4) with the cell parameters: a = 11.400Å, b = 5.515Å, c = 9.07Å and belongs to the oxysel family. Sm3GaO6 and SmGaO3 melt incongruently at 1715 and 1565°C; Sm4Ga2O9 and Sm3Ga5O12 have a congruent melting point at 1710 and 1655°C. With regard to the Gd2O3Ga2O3 system three definite compounds have been identified: Gd3GaO6, Gd4Ga2O9, and Gd3Ga5O12. Only the garnet melts congruently at 1740°C with the following composition: Gd3.12Ga4.88O12. Gd3GaO6, and Gd4Ga2O9 melt incongruently at 1760 and 1700°C. GdGaO3 is only obtained by melt overheating which may yield an equilibrium or a metastable phase diagram.  相似文献   

6.
The thermal decompositon of a number of organo-bielemental vanadium compounds with the general formula Cp2V(ER3) (ER3 - GeEt3, SnEt3, CH2SiMe3, SeGeEt3) has been investigated in solids and in solution. The main decomposition products of Cp2V(SnEt3) are vanadocene and hexaethyldistannane. Et3GeH, Et3GeCp, Cp2V and CpV(C5H4GeEt3) are formed from Cp2V (GeET3) decomposition. Isolated CpV(C5H4GeEt3) is characterized by IR and mass spectra. The decomposition of Cp2V(CH2SiMe3) is accompanied by Me4Si, Cp2V and CpV-(C5H4CH2SiMe3) formation, the latter is identified from the mass spectrum. Triethylgermane, vanadocene, and a diselenide of vanadium are isolated on decomposition of Cp2V(SeGeEt3). Based upon the experimental data, mechanisms for the decompositon are proposed.  相似文献   

7.
The compounds RbAuUSe3, CsAuUSe3, and RbAuUTe3 were synthesized at 1073 K from the reactions of U, Au, Q, and A2Q3 (A=Rb or Cs; Q=Se or Te). The compound CsAuUTe3 was synthesized at 1173 K from the reaction of U, Au, Te, and CsCl as a flux. These isostructural compounds crystallize in the KCuZrS3 structure type in space group Cmcm of the orthorhombic system. The structure consists of layers that contain nearly regular UQ6 octahedra and distorted AuQ4 tetrahedra. The infinite layers are separated by bicapped trigonal prismatic A cations. The magnetic behavior of RbAuUSe3 deviates significantly from Curie–Weiss behavior at low temperatures. For T>200 K, the values of the Curie constant C and the Weiss constant θp are 1.82(9) emu K mol−1 and −3.5(2)×102 K, respectively. The effective magnetic moment μeff is 3.81(9) μB. Formal oxidation states of A/Au/U/Q may be assigned as +1/+1/+4/−2, respectively.  相似文献   

8.
Transition metal trichalcogenides TaSe3, TaS3, NbSe3 and NbS3 were prepared under the reaction conditions of 2 GPa, 700°C, 30 min. NbSe3 is exactly the same as that obtained in the usual sealed-tube method. The other products are modifications of each usual phase. They have crystal structures very similar to that of NbSe3. The lattice parameters are a = 10.02Å, b = 3.48 Å, c = 15.56 Å, β = 109.6° for TaSe3, a = 9.52 Å, b = 3.35 Å, c = 14.92 Å, β = 110.0° for TaS3, and a = 9.68 Å, b = 3.37 Å, c = 14.83 Å, β = 109.9° for NbS3. In spite of the similarity in their crystal structures, these high-pressure phases show a variety of electrical transport properties. TaSe3 is a superconductor having Tc at 1.9 K. TaS3 is a semiconductor with two transitions at 200 and 250 K. NbS3 is a semiconductor with Ea = 180 MeV.  相似文献   

9.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

10.
The trigonal bipyramidal structure of trichloromethyl-tetrachlorophosphorane CCl3PCl4 and bis(trichloromethyl)trichlorophosphorane (CCl3)2PCl3 molecules with apical CCl3 groups is responsible for steric hindrances to reorientations of these groups around the C–P bond. The intramolecular barriers to CCl3 reorientations calculated for the two phosphoranes (Hartree–Fock method using the 6-31G(d) basis set) are 105.9 kJ/mole and 106.6 kJ/mole, respectively. These internal barriers are high enough to block the reorientational motion of the CCl3 groups, as found previously by 35Cl NQR for the stated crystals.  相似文献   

11.
12.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

13.
The complex salts ((DienH3)[IrCl6](NO3) (I), (DienH3)[PtCl6](NO3) (II), and (DienH3)[IrCl6]0.5[PtCl6]0.5(NO3) (III) (where Dien is NH2(CH2)2NH(CH2)2NH2) were synthesized and characterized by elemental, X-ray diffraction, and thermal analyses and by electronic and IR spectroscopies. Solid solution of the composition Ir0.35Pt0.65 was obtained by decomposition of compound III in the atmosphere of hydrogen. Original Russian Text ? E.V. Makotchenko, I.A. Baidina, P.E. Plusnin, L.A. Sheludyakova, Yu.V. Shubin, S.V. Korenev, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 1, pp. 47–54.  相似文献   

14.
Laser excitation of equilibrium vapor mixtures ErCl3(s)-ACl3(g) (A = Al, Ga, In) at 475–1100 K gives rise both to resonance fluorescence from the f → f Er3+ transitions of the Er-Cl-A vapor complexes, and to Raman scattering due to the vibrational modes of the ACl3 vapor. The laser-induced fluorescence from the 4F92, 4S32 and 2H112 states has been investigated at different temperatures and excitation.  相似文献   

15.
Three new sodium cobalt (nickel) selenite compounds, namely, Na2Co2(SeO3)3, Na2Co1.67Ni0.33(SeO3)3, and Na2Ni2(SeO3)3 have been hydro-/solvothermally synthesized in the mixed solvents of acetonitrile and water. Single-crystal X-ray diffraction analyses reveal that these isostructural compounds belong to the orthorhombic Cmcm space group and their structures feature three-dimensional open frameworks constructed by the two-dimensional layers of [MSeO3] pillared by the [SeO3]2− groups. The two different types of Na+ ions reside in the intersecting two-dimensional channels parallel to the a- and c-axes, respectively. Their thermal properties have been investigated via TGA-DSC. The magnetic measurements indicate the existence of the antiferromagnetic interactions in these compounds.  相似文献   

16.
The LiPO3CeP3O9 and NaPO3CeP3O9 systems have been investigated for the first time by DTA, X-ray diffraction, and infrared spectroscopy. Each system forms a single 1:1 compound. LiCe(PO3)4 melts in a peritectic reaction at 980°C. NaCe(PO3)4 melts incongruently, too, at 865°C. These compounds have a monoclinic unit cell with the parameters: a = 16.415(6), b = 7,042(6), c = 9.772(7)Å; β = 126.03(5)°; Z = 4; space group C2c for LiCe (PO3)4; and a = 9.981(4), b = 13.129(6), c = 7.226(5) Å, β = 89.93(4)°, Z = 4, space group P21n for NaCe(PO3)4. It is established that both compounds are mixed polyphosphates with chain structure of the type |MIIMIIIII (PO3)4|MII: alkali metal, MIIIII: rare earth.  相似文献   

17.
18.
Electrical conductivities were measured for the ternary systems Y(NO3)3+La(NO3)3+H2O, La(NO3)3+Ce(NO3)3+H2O, La(NO3)3+Nd(NO3)3+H2O, and their binary subsystems Y(NO3)3+H2O, La(NO3)3+H2O, Ce(NO3)3+H2O, and Nd(NO3)3+H2O at (293.15, 298.15 and 308.15) K. The measured conductivities were used to test the generalized Young’s rule and the semi-ideal solution theory. The comparison results show that the generalized Young’s rule and the semi-ideal solution theory can yield good predictions for the conductivities of the ternary electrolyte solutions, implying that the conductivities of aqueous solutions of (1:3 + 1:3) electrolyte mixtures can be well predicted from those of their constituent binary solutions by the simple equations.  相似文献   

19.
Single crystals of new oxyborates, Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3, were prepared at 1370 °C in air using B2O3 as a flux. They were colorless and transparent with block shapes. X-ray diffraction analysis of the single crystals revealed Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 to be isostructural. The X-ray diffraction reflections were indexed to the orthorhombic Pnma (No. 62) system with a=9.3682(3) Å, b=9.4344(2) Å, c=9.3379(3) Å and Z=4 for Mg5NbO3(BO3)3 and a=9.3702(3) Å, b=9.4415(3) Å, c=9.3301(2) Å and Z=4 for Mg5TaO3(BO3)3. The crystal structures of Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 are novel warwickite-type superstructures having ordered arrangements of Mg and Nb/Ta atoms. Polycrystals of Mg5NbO3(BO3)3 prepared by solid state reaction at 1200 °C in air showed broad blue-to-green emission with a peak wavelength of 470 nm under 270 nm ultraviolet excitation at room temperature.  相似文献   

20.
NH3(MoO3)3 crystallizes with hexagonal symmetry, space group P63m, lattice constants a = 10.568 Å, c = 3.726 Å, and Z = 2. The crystal structure has been determined by Patterson synthesis and refined assuming isotropic temperature factors to a final conventional R value of 0.085. The structure shows a three-dimensional arrangement built up of double chains of distorted MoO6 octahedra, parallel to the [001] direction. The octahedral double chains are linked among each other through common oxygen atoms. In addition to the shared oxygen atoms, each molybdenum is coordinated to one terminal oxygen. MoO distances range from 1.645 to 2.378 Å and OMoO angles from 74.3 to 114.3°. These results are consistent with the fact that molybdenum in high-valence states shows octahedral coordination with terminal oxygens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号