首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Gd1Ba2Cu3Ox (GdBCO) coated conductors using bi-axially textured clad-type substrates have been developed for high temperatures superconducting (HTS) power cables. In this project, large amount of coated conductors (CCs) are necessary for the several tests of basic properties of HTS power cables and the fabrication of a 15 m long 3-in-one HTS model cable. In order to ensure an adequate amount and properties of coated conductors, the stable manufacturing technology and the high production rate at each process are required.In this report, we have newly installed a high power laser of 300 W for the PLD system, resulting in improvement of the manufacturing stability and the deposition rate for GdBCO film. In addition, we have optimized target–substrate distance in PLD process, and the uniformity of Ic distribution across 30 mm wide tapes were remarkably improved. Furthermore, the surface morphology of buffer layers were enhanced by optimizing the deposition condition using electron beam (EB) evaporation method, and the maximum Ic value for a short sample has achieved 497 A/cm at 77 K in the self-field. Based on these progresses, we are currently developing the stable manufacturing process for long CCs with over 400 A/cm.  相似文献   

2.
We have reported SmBa2Cu3Oy (SmBCO) films on single crystalline substrates prepared by low-temperature growth (LTG) technique. The LTG-SmBCO films showed high critical current densities in magnetic fields compared with conventional SmBCO films prepared by pulsed laser deposition (PLD) method. In this study, to enhance critical current (Ic) in magnetic field, we fabricated thick LTG-SmBCO films on metal substrates with ion-beam assisted deposition (IBAD)-MgO buffer and estimated the Ic and Jc in magnetic fields.All the SmBCO films showed c-axis orientation and cube-on-cube in-plane texture. Tc of the LTG-SmBCO films were 93.1–93.4 K. Jc and Ic of a 0.5 μm-thick SmBCO film were 3.0 MA/cm2 and 150 A/cm-width at 77 K in self-field, respectively. Those of a 2.0 μm-thick film were 1.6 MA/cm2 and 284 A/cm-width respectively. Although Ic increased with the film thickness increasing up to 2 μm, the Ic tended to be saturated in 300 A/cm-width. From a cross sectional TEM image of the SmBCO film, we recognized a-axis oriented grains and 45° grains and Cu–O precipitates. Because these undesired grains form dead layers, Ic saturated above a certain thickness. We achieved that Ic in magnetic fields of the LTG-SmBCO films with a thickness of 2.0 μm were 88 A/cm-width at 1 T and 28 A/cm-width at 3 T.  相似文献   

3.
Sm1+xBa2?xCu3+yO7?δ (SmBCO) films were directly deposited on the epi-MgO/IBAD-MgO/Y2O3/Al2O3/Hastelloy template by co-evaporation using the evaporation using drum in dual chambers (EDDC) system without the buffer layer in order to investigate the effect of the composition ratios on superconducting property, microstructure and texture of SmBCO film. The films with gradient composition ratios of Sm:Ba:Cu were deposited using a shield with an opening which was placed between the substrate and the boats. The highest Ic of 52 A (corresponding to Jc = 1.6 MA/cm2 and a thickness of 800 nm) was observed at 77 K in self field at a composition x = 0.01–0.05 and y = ?0.23 to ?0.46. When the composition ratio is outside this range, the Ic value rapidly decreased. The superconducting critical current was highly dependent on the composition ratio. As the composition ratio is farther away from that of the highest Ic, the SmBCO (1 0 3) peak intensity increased and the amount of a-axis oriented parts increased. A dense microstructure with round-shape grains was observed in the region showing the highest Ic. The optimum composition ratio can be found by analyzing films deposited with variable deposition rates of each depositing element.  相似文献   

4.
(Gd,Y)Ba2Cu3Ox tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0–15 mol.% and Ce doping levels of 0–10 mol.% in 0.4 μm thick films. The critical current density (Jc) of Zr-doped samples at 77 K, 1 T applied in the orientation of H 6 c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (Jc) of 0.95 MA/cm2 at H 6 c which is more than 70% higher than the Jc of the undoped sample. The peak in Jc at H 6 c is 83% of that at H 6 ab in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (Tc) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different Jc values as well as angular dependence characteristics.  相似文献   

5.
We have tried to vary the carriers concentration in Cu0.5Tl0.5Ba2Ca3Cu4?yZnyO12?δ (y = 0, 1, 1.5, 2, 2.5) superconductor with the help of post-annealing experiments carried out in nitrogen, oxygen and air and to investigate its effects on the superconductivity parameters. The zero resistivity critical temperature [Tc(R = 0)], the magnitude of diamagnetism and critical current [Ic(H = 0)] are found to increase in Zn free samples after post-annealing in oxygen and air, while these superconducting properties have been suppressed after post-annealing in nitrogen at 550 °C for 6 h. The post-annealing of Zn-doped samples in air has marginally increased the superconducting properties, while these properties have been suppressed after post-annealing in nitrogen and oxygen. These studies have led us to the definite conclusion that the Zn-doped material has grown with optimum carriers concentration.  相似文献   

6.
The properties of discontinuous aligned pinning centers (PCs) created by high-energy heavy-ions are compared for bulk melt-textured and coated conductor HTS. Properties of PCs, which increase Jc (pinning potential and entanglement), and negative properties which decrease Jc (e.g., decreased Tc and percolation paths) are evaluated. Mechanisms are proposed to explain the very large increases in Jc resulting from multiple-in-line-damage (MILD) compared to continuous columnar pinning centers (CCPC). In particular, a mechanism which results in fluxoid entanglement, even for parallel (unsplayed) PCs, is discussed. The same mechanism is found to also account for restoration of much of the pinning potential expected to be lost due to the gaps in MILD PCs. It also accounts for the fact that at high fluence, Jc increases as fluence is increased, instead of decreasing as expected. The very low self-field in coated conductor permits separation of the negative and positive effects of PCs. It is found that parameters developed to quantify the negative effects in bulk melt-textured YBCO, by 63 GeV U238 ions, successfully describe damage to 2.1 μm thick coated conductor by 1 GeV Ru44 ions. Coated conductor at 77 K and self-field is generally known to have Jc about 100 times that of melt-textured YBCO. However, at 77 K and applied field of 1 T, when both forms of HTS are processed with comparable numbers of near-optimum MILD PCs, the difference in Jc is reduced to a factor of 1.3–2. Whereas Jc for melt-textured YBCO increased sharply, by a factor of up to 16.8 for high-fluence MILD PCs, Jc in coated conductor increased by a smaller factor of 2.5–3.0. Nevertheless, 2.1 μm thick coated conductor, with near-optimum MILD PCs, exhibits Jc = 543 kA/cm2 at 77 K and applied field of 1.0 T, and Ic = 114 A/cm-width of conductor. This is the highest value we find in the literature. The phenomenology developed indicates that for optimum MILD PCs in coated conductor, Jc  700 ± 70 kA/cm2 should be achievable at 77 K, 1.0 T.  相似文献   

7.
The effect of calcium doping on the superconducting properties of top seeded melt growth (TSMG) processed Y1.5Ba2?xCaxCu3Oy superconductors was studied in terms of calcium content (Xca). YBa2?xCaxCu3O7?δ (Xca = 0, 0.005, 0.01, 0.02, 0.04, 0.1, 0.3) powders were synthesized by the powder calcination method. YBa2?xCaxCu3O7?δ powders were mixed with 0.25 mole Y2O3 powder and 1 wt.% CeO2 as Y2BaCuO5 (Y211) refiner, and finally made into Y1.5Ba2?xCaxCu3Oy (Y1.5) + 1 wt.% CeO2 composition. The single Y123 growth on the top surface was observed up to Xca = 0.1, while the multiple Y123 growth was observed at Xca ? 0.1. The superconducting transition temperature (Tc) and critical current density (Jc) of TSMG processed Y1.5 samples were inversely proportional to Xca. The Y211 size increased with increasing Xca due to the enhancement of Y211 coarsening by calcium doping. No Y211 refining effect by CeO2 was observed in the calcium doped samples. The Tc and Jc decrease by calcium doping are likely to be due to the calcium incorporation with the Y123 lattice and formation of coarse Y211 particles.  相似文献   

8.
When two superconductors are connected by a weak link a supercurrent flows determined by the difference in the macroscopic quantum phases of the superconductors. Originally, this phenomenon was discovered by Josephson for the case of a weak link formed by a thin tunnel barrier. The supercurrent I is related to the phase difference ϕ through the Josephson current–phase relation, I = Icsin ϕ, with Ic, the critical current, depending on the properties of the weak link. A similar relation holds for weak links consisting of a normal metal, a semiconductor or a constriction . In all cases, the phase differenceϕ =  0 when no supercurrent flows through the junction, and ϕ increases monotonically with increasing supercurrent until the critical current is reached. Using nanolithography techniques we have succeeded in making and studying a Josephson junction with a normal metal weak link, in which we have direct access to the microscopic current-carrying states inside the link. We find that the fundamental Josephson relation can be changed fromI = Icsin ϕ toI = Icsin(ϕ + π), i.e. to a π -junction, by suitably controlling the energy distribution of the current-carrying states in the normal metal. This fundamental change in the way these Josephson junctions behave has potential implications for their use in superconducting electronics as well as (quantum) logic circuits based on superconductors.  相似文献   

9.
To understand the effect of Y2BaCuO5 (Y211)/YBa2Cu3O7?y (Y123) interfaces on the oxygen diffusion in single grain YBa2Cu3O7?y superconductors, single grain Y123 superconductors with 0.05 and 0.3 moles of Y2O3 additions were fabricated by a top-seeded melt growth (TSMG) process. Y123 compacts with Y2O3 additions were subjected to melt growth heating cycles with a cooling rate of 1 °C/h through a peritectic temperature (1015 °C) and then annealed at 450 °C for 200 h in flowing oxygen. The superconducting temperature (Tc) and critical current density (Jc) were estimated for the three different regions (top surface (s), intermediate (i) and center (c)) of samples. The amount of Y211/Y123 interface area in single grain Y123 superconductors was successfully controlled by Y2O3 additions. The Tc values of s regions were higher than those of i and c regions, which indicates the presence of more oxygen at the sample surfaces. In addition, the Tc values of i and c regions of the Y123 sample with 0.3 mole Y2O3 addition were higher than those of the same regions of the Y123 sample with 0.05 mole Y2O3 addition due to the promoted oxygen diffusion through Y211/Y123 interfaces and other related defects. In spite of the promoted oxygen diffusion by Y2O3 addition, the large Tc difference among the regions still existed, which suggests sluggish oxygen diffusion into single Y123 grains.  相似文献   

10.
A batch production for fabrication of LREBa2Cu3Oy (LRE: Sm, Gd, NEG) “LRE-123” pellets are developed in air and Ar-1% O2 using a novel thin film Nd-123 seeds grown on MgO crystals. The SEM and XRD results conformed that the quality and orientation of the seed crystals are excellent. On the other hand, new seeds can withstand temperatures >1100 °C, as a result, the cold seeding process was applied even to grow Sm-123 material in Air. The trapped field observed in the best 45 mm single-grain puck of Gd-123 was in the range of 1.35 T and 0.35 T at 77.3 K and 87.3 K, respectively. The average trapped field at 77.3 K in the 24 mm diameter NEG-123 samples batch lies between 0.9 and 1 T. The maximum trapped field of 1.2 T was recorded at the sample surface. Further, the maximum trapped field of 0.23 T at 77 K was recorded in a sample with 16 mm diameter of Sm-123 with 3 mol% BaO2 addition. As a result we made more then 130 single grain pucks within a couple of months. Taking advantage of the single grain batch processed material, we constructed self-made chilled levitation disk, which was used on the open day of railway technical research Institute. More then 150 children stood on the levitation disk and revel the experience of levitation. The present results prove that a high-performance good-quality class of LREBa2Cu3Oy material can be made by using a novel thin film Nd-123 seeds.  相似文献   

11.
We report the achievement of transport critical currents in Sr0.6K0.4Fe2As2 wires and tapes with a Tc = 34 K. The wires and tapes were fabricated through an in situ powder-in-tube process. Silver was used as a chemical addition as well as a sheath material. All the wire and tape samples have shown the ability to transport superconducting current. Critical current density Jc was enhanced upon silver addition, and at 4.2 K, a largest Jc of ~1200 A/cm2 (Ic = 9 A) was achieved for 20% silver added tapes, which is the highest in iron-based wires and tapes so far. The Jc is almost field independent between 1 T and 10 T, exhibiting a strong vortex pinning. Such a high transport critical current density is attributed to the weak reaction between the silver sheath and the superconducting core, as well as an improved connectivity between grains. We also identify a weak-link behavior from the apparent drop of Jc at low fields and a hysteretic phenomenon. Finally, we found that compared to Fe, Ta and Nb tubes, Ag was the best sheath material for the fabrication of high-performance 122 type pnictide wires and tapes.  相似文献   

12.
A series of Gd2Zr2O7 (GZO) single buffer layers with different thicknesses were epitaxially grown on highly textured Ni–5 at.% W tapes using pulsed laser deposition. These allow the subsequent growth of high-quality superconducting YBa2Cu3O7?δ layers. The superconducting transition temperature Tc reaches a maximum value of 92.4 K as well as a narrow transition width of 0.8 K for the optimized GZO layer thickness. The inductive measurements show the critical current density as high as 1.2 MA/cm2 at 77 K in self-field, indicating that a GZO single buffer layer is a suitable alternative for simplifying the second generation high Tc superconducting coated conductors architecture.  相似文献   

13.
YBa2Cu3O7?δ (YBCO) superconductors were coated on the CeO2/YSZ/Y2O3 buffered Ni-5at%W tapes by a reel-to-reel pulsed laser deposition (PLD). The process of a multi-layer deposition of YBCO film was explored. X-ray diffraction texture measurements showed good both in-plane and out of plane crystalline orientations in YBCO films. The average values calculated at a full width at half maximum (FWHM) of the peaks from phi-scans (φ) and omega (ω) scans for one meter-long YBCO tape were 7.49° and 4.71°, respectively. The critical current (Ic) was over 200 A/cm-width at 77 K and under self-field for meter-long YBCO tape. The critical transition temperature of the YBCO tape was typically as 90.1 K with 0.5 K transition widths.  相似文献   

14.
Equal amount Pr and Ca double-doping Y1?2xPrxCaxBa2Cu3O7?δ with 0 ? x ? 0.14 have been investigated by X-ray diffraction, resistivity, and X-ray photoemission spectroscopy (XPS). The deviation of the linearly decreasing of Tc vs. x curve was observed when x < 0.10. The resistivity and the temperature coefficient of resistivity also exhibit abnormal behaviors around x = 0.10. It is revealed that the conductivity behavior of Y1?2xPrxCaxBa2Cu3O7?δ with low Pr content (x < 0.10) is different from that of the relative high Pr content (x > 0.10), which suggests a change of Pr valence with the Pr content. XPS measurement shows that the relative amount of Pr3+ and Pr4+ is closely related to the total Pr content x. The valence of Pr is close to +3 when x < 0.10 and increases towards +4 when x > 0.10, which implies a different mechanism for depression of superconductivity of Pr content x < 0.10 from that of Pr content x > 0.10 in Pr doping Y-123.  相似文献   

15.
Y1?xHoxBa2Cu3O7?δ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) thin films were prepared on LaAlO3 (0 0 1) substrates by trifluoroacetate metal organic deposition (TFA-MOD) without change of the processing parameters. The highest Jc was attributed to the sample of Y0.6Ho0.4Ba2Cu3O7?δ thin film, whose critical current density is about 1.6 times as compared to that of YBa2Cu3O7?δ thin film at 77 K and self field. The flux pinning type was not varied with Ho substitution and can be attributed to δl pinning model, which is attributed to the close ionic radius between the Y3+ and Ho3+ ions. The improvement of Jc by Ho substitution without change of the processing parameters will provide an effective route to enhance the Jc of YBCO-based thin films using TFA-MOD method.  相似文献   

16.
Linear damage tracks are created in production-quality YBCO coated conductors by irradiation with 61–74 MeV Ag ions. The ion tracks are observed by transmission electron microscopy to be elongated but discontinuous. The in-field transport critical current (Ic) is enhanced significantly for fields applied parallel to the irradiation direction with a broad peak appearing in the magnetic field-angle dependence of the critical current, coinciding with the irradiation direction. The zero-field Ic is typically reduced somewhat, however annealing at 200 °C partially restores this and enhances the in-field Ic even for field parallel to the irradiation direction. Lower energies tend to produce a weaker peak, but also retain the zero-field Ic to a greater extent, consistent with a trend of greater discontinuity in the ion tracks.  相似文献   

17.
Mg0.9Zr0.1B2/Cu wires were successfully synthesized by powder-in-tube (PIT) techniques with self-propagating high-temperature synthesis (SHS) method. We loaded the mixed of Mg, Zr and B power into Cu tube. The tube was drawn to a wire and each end of the tube was sealed by the sealant, then rolled into solenoid with 1.5 cm diameter. The wire was heated up to 270 °C in a furnace with general air pressure, then, ignited the wire with electric arc from one of the end, the self-propagating reaction was completed in 2.0–2.5 s. Finally, the prepared wire was followed by furnace cooling to room temperature. The sample was examined using XRD, SEM, and magnetization measurements. The experiments show that there are small MgCu2 and boron-rich phases inner sheath wall of copper tube. The magnesium oxide is small in the sample. So, PIT technologies with SHS method is effective in stopping the volatile and oxidize of magnesium. The Jc results show that Mg0.9Zr0.1B2/Cu wires samples which were synthesized by SHS method are better than those sintered for 1 h and Cu clad pure MgB2 wire. The highest Jc of the prepared Mg0.9Zr0.1B2/Cu wire by SHS method in the air is 5.1 × 105 A/cm2 (5 K, 0.5 T), 1.4 × 105 A/cm2 (20 K, 1 T) and 4.3 × 104 A/cm2 (30 K, 0.5 T).  相似文献   

18.
We have prepared metal organic deposition (MOD)-YBCO thick films by repeating the coating-pyrolysis-crystallization procedure onto ~100-nm-thick evaporated and MOD templates. Surface morphology of the template was found to strongly affect the homoepitaxial growth of MOD-YBCO layers on the template; namely, the epitaxial growth of MOD-YBCO on the evaporated template was much easier than that on the MOD template. A 220-nm-thick epitaxial MOD-YBCO film was successfully prepared on the 100-nm-thick evaporated-YBCO template to obtain a 320-nm-thick YBCO film, which exhibited Jc = 2.44 MA/cm2 and Ic = 78 A/cm. The Ic value has significantly increased from 37 A/cm for the evaporated-template.  相似文献   

19.
Superconducting properties have been systematically studied for oxygen content controlled Y2Ba4O7O15?δ (Y247) polycrystalline bulks sintered under various conditions, 940–975 °C and P(O2) = 4–16 atm. Tc of oxygen annealed Y247 samples at 400 °C varied largely depending on the sintering conditions from ~60 to ~90 K. Samples sintered under higher P(O2) exhibited lower Tc, whereas they were confirmed to be of Y247 single phase by powder X-ray analyses. Strong relationship between orthorhombicity defined as 1000(b ? a)/(a + b) and Tc was found in Y247 as in the cases of REBa2Cu3O7?δ with light rare-earth elements, such as La, Nd, Sm, Eu and Gd. In addition, Tc‘s of samples with nominal compositions of Y2+xBa4?xO7O15?δ systematically decreased with an increase of x. These results indicated that partial substitution of Y for Ba occurred in the Y247 compounds possibly due to high occupancy ratio of oxygen at the Cu–O1-δ chain during the sintering process.  相似文献   

20.
We studied the effect of TiO2 doping on flux pinning and superconducting properties of a melt-grown (Nd0.33Eu0.33Gd0.33) Ba2Cu3Oy + 35 mol% Gd2BaCuO5 (70 nm in size) composite (NEG-123) processed in Ar–1% O2 atmosphere. As indicated by similar, sharp superconducting transitions, the small quantities of TiO2 used in our experiments did not deteriorate superconducting properties of the NEG material. Transmission electron microscopy (TEM) analysis found 20–50 nm Ti-based particles in the NEG-123 matrix. However, we have not observed the clouds of <10 nm sized particles in the NEG-123 matrix, as in the case of recently reported NEG-123 composites doped by Mo and Nb nanoparticles. Nevertheless, quite a good JcB performance in the 0.1 mol% Ti-doped sample, namely 550 kA/cm2 at the self-field and at the secondary peak field (4.5 T) was achieved at 65 K, while 320 kA/cm2 was obtained at zero-field at 77 K, and 50 kA/cm2 at 90.2 K. The pinning effectiveness decreased with increasing Ti content above 0.2 mol%. The analysis of the pinning force showed that higher concentration of Ti (>0.2 mol%) increased the amount of normal pins (δl pinning), indicated by the Fp(h) peak shift from h = 0.42–0.36. The maximum pinning effect in a broad field range could be achieved by optimizing Ti content and adding sub-micron Gd-211 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号