首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Numerous experimental results have suggested that the Jc of YBa2Cu3O7 (YBCO) films is significantly higher near the film–substrate interface than in the remainder of the film. We previously proposed that this effect is due to interfacial pinning enhancement caused by stress and the resulting misfit dislocations at the heteroepitaxial interface. To test this hypothesis we have used a non-superconducting PrBa2Cu3O7?δ (PrBCO) buffer layer to minimize the lattice mismatch with YBCO. We find that the PrBCO layers lower Jc of the 0.4 μm YBCO films in a predictable way, and that, if sufficiently thick (~0.5 μm), they eliminate interfacial enhancement altogether. Our interpretation of this result is that the defects responsible for interfacial enhancement of flux pinning originate at the bottom of the non-superconducting PrBCO layer, which screens the pinning centers from vortices in YBCO. This result demonstrates that the pinning enhancement arises from stress at the film–substrate interface.  相似文献   

2.
Biaxially textured GdBa2Cu3O7?z (GdBCO) films with Tc above 93 K have been prepared on (0 0 l) LaAlO3 substrate by self-developed non-fluorine polymer-assisted chemical solution deposition (PA-CSD) approach. The GdBCO films show smooth and crack-free morphology. Many nanoscale particles with homogeneous distribution are observed in the GdBCO films, which have not been observed yet in the YBa2Cu3O7?z (YBCO) films prepared by the same processing technique. Besides a high Jc (77 K, 0 T) of 2.28 MA/cm2, the optimized GdBCO films show a better JcB behavior and an improved high-field Jc, compared to the YBCO films.  相似文献   

3.
We report the effects of BSO addition on the crystallinity, texture, and the field dependency of critical current density (Jc) of GdBCO coated conductors (CCs) prepared by pulsed laser deposition (PLD). Undoped and BSO-doped GdBCO films showed only c-axis oriented growth, and the incorporated BSO nanorods exhibited epitaxial relationship with the GdBCO matrix. In comparison with undoped film, BSO-doped GdBCO film exhibited greatly enhanced Jc and higher pinning force densities in the entire field region of 0–5 T (H//c) at 77 and 65 K. The BSO-doped GdBCO film showed the maximum pinning force densities (Fp) of 6.5 GN/m3 (77 K, H//c) and 32.5 GN/m3 (65 K, H//c), ~2.8 times higher than those of the undoped sample. Cross-sectional TEM analyses exhibited nano-structured BSO nanorods roughly aligned along the c-axis of the GdBCO film, which are believed effective flux pinning centers responsible for strongly improved critical current densities in magnetic fields.  相似文献   

4.
Y1?xHoxBa2Cu3O7?δ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) thin films were prepared on LaAlO3 (0 0 1) substrates by trifluoroacetate metal organic deposition (TFA-MOD) without change of the processing parameters. The highest Jc was attributed to the sample of Y0.6Ho0.4Ba2Cu3O7?δ thin film, whose critical current density is about 1.6 times as compared to that of YBa2Cu3O7?δ thin film at 77 K and self field. The flux pinning type was not varied with Ho substitution and can be attributed to δl pinning model, which is attributed to the close ionic radius between the Y3+ and Ho3+ ions. The improvement of Jc by Ho substitution without change of the processing parameters will provide an effective route to enhance the Jc of YBCO-based thin films using TFA-MOD method.  相似文献   

5.
In pulsed laser deposition of YBa2Cu3O7?δ films, defect introduction into the films tends to anisotropically improve the pinning along the H||c direction due to the columnar growth mode of the process. In Eu-substituted samples, however, even though an increase in critical current density (Jc) in the H||c direction was observed for low fields (H = 0.2 T), the improvement was more notable for the H||ab-plane at both low and higher fields. Herein we present detailed TEM microstructural studies to understand these new trends in Jc(H), which are markedly different than flux pinning increases achieved with other methods, for example, with nanoparticle additions. Threading dislocations, observed in the Eu-substituted samples along the c-axis, account for Jc enhancement with H||c at low field. The enhanced ab-planar pinning in the Eu-substituted samples is attributed to the extensive bending of the {0 0 1} lattice planes throughout the film, and the crystal lattice defects with excess Cu–O planes, that were effective in increasing the Jc for H||ab at both low and high fields.  相似文献   

6.
Different mechanisms may exists as a means to provide additional or specialized enhancement of existing nanoparticulate pinning in YBa2Cu3O7?x (YBCO) thin films. In the particular case of Y2BaCuO5 (Y211) nanoparticles, Ca-doping of these nanoparticles via addition to the Y211 target material provides an additional increase to the Jc(H). YBCO + Y211 samples were created by pulsed laser deposition with alternating targets of YBCO with Y211 and Y211 doped with Ca. Initial indications suggest that this improvement in pinning results from some scattered short-ranged self-assembly of the nanoparticles into short nanocolumns.  相似文献   

7.
The stability of various amounts of Ba3Cu3In4O12 (334) or BaTbO3 (BTO) in a sintered YBa2Cu3Oy (YBCO) matrix was examined. Samples with added 334 or BTO exhibited critical temperatures (Tc) above 90 K for up to 20 vol.% addition and improved critical current densities (Jc) under a magnetic field. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) analysis indicated that 334 and BTO did not react with the YBCO matrix under the sintering conditions used. The normalized Jc under a magnetic field of 1 T reached a maximum at 14 vol.% of 334 addition and 20 vol.% BTO addition. YBCO thin films with added BTO showed a gradual decrease in the Tc with increasing BTO content. YBCO films with added 334 showed a constant Tc of 87 K up to a 334 content of 4 vol.%.  相似文献   

8.
The YBCO films with BaSnO3 (BSO) particles were prepared on LAO (0 0 1) substrates by metal organic deposition using trifluoroacetates (TFA-MOD) via introducing SnCl4 powders into the YBCO precursor solution. It was found that with the increase of the SnCl4 contents, the slower decomposition and higher temperature for nucleation during the reaction were requested compared to that of pure YBCO film. The YBCO films with different contents of Sn with dense surface and well c-alignment were obtained under optimized heat treatment, and the BaSnO3 phases were detected by XRD analysis. Litter effect of BSO particles on the Tc and Jc values of YBCO films was found. All YBCO films with BSO particles had Tc values over 90 K and Jc values over 1 MA/cm2. A significant enhancement of Jc was observed for YBCO films with BSO particles compared to that of pure YBCO film by the field dependence of Jc values. The best property was obtained for YBCO film with 6 mol.% Sn at 77 K under magnetic field. The results showed that the Jc value of YBCO film with 6 mol.% Sn was enhanced by a factor of 2 in 2 T, and over a factor of 10 beyond 4 T compared to that of pure YBCO film.  相似文献   

9.
The optimization of flux line pinning in superconductors is one of the most efficient ways to improve the transport properties of these materials. The generation of effective artificial pinning centers in a controlled way and with optimal dimensions can contribute to the enhancement of pinning capability and to the improvement of the critical current densities Jc. In this work, we examined the effectiveness of an insulating inclusion in a type II superconductor as a pinning center with a size close to the penetration depth λ instead of the coherence length ξ. To this effect, insulating nano-pinning centres (100–150 nm) have been successfully embedded into superconducting YBa2Cu3O7?d (Y-123) matrix by slightly doping with nano-particle alumina dispersions. Two alumina nano-particle dispersions with mean size diameters of about 130 nm and 150 nm which are considerably larger than the coherence length ξ of Y-123 were used. A systematic study of the relationship of Jc(H,T) with different amounts of D1 and D2-nanoalumina additions was performed to determine the optimum nano-particle doping contents. The results indicate that slight inclusions of D1 or D2-nanoalumina can effectively enhance the flux pinning capability of samples. The best flux pinning was observed in the sample with 10?2 wt.% D1-alumina and 3 × 10?2 wt.% D2-alumina. The present work suggests that the use of sufficiently large insulating inclusions in the nanometer sub-scale can stabilize the flux-line lattice. It also shows that the optimal size for an insulating inclusion, acting as a pinning center in bulk material, is more likely related to λ than to ξ.  相似文献   

10.
We have investigated the flux pinning effect of columnar grain boundary in columnar-structured and single crystalline MgB2 films. The MgB2 films with columnar structure showed much higher Jc than that of single crystalline thin film, and sample having smaller grain size had a higher Jc in high magnetic fields. At 5 K, the MgB2 film with grain size of 460 nm showed an abnormal double-peak behavior in pining force density, Fp(B), caused by competition of different types of pinning sites, such as planar defects and point defects. Field dependences of Fp in columnar-structured films suggest that the columnar grain boundary is a strong pinning source in the MgB2 film and it plays a crucial role in enhancing Jc over a wide range of magnetic fields and temperatures.  相似文献   

11.
Epitaxial thin films of Sr2FeMoO6 (SFMO) were prepared by pulsed laser deposition on SrTiO3(1 0 0) substrate. Thin films have been grown under different gas environments and they were structurally characterised by XRD. In contrast to previous reports, deposition carried out in the presence of a small amount of O2 with Ar yields high-quality SFMO films with a saturation magnetic moment of 3.8 μB. These SFMO films were strained in such a way that they were elongated along the c-axis and compressed in the ab-axes directions. The large low-field magnetoresistance seen in these films has been attributed to the tunneling across the antisite boundaries.  相似文献   

12.
Using Pulsed Laser Deposition we have fabricated thick quasi-multilayers composed of incomplete layers of PrBa2Cu3Ox (PrBCO) nano-dots and layers of YBa2Cu3O7?δ (YBCO). The number of such sequences was between 2 and 6, with the thickness of individual YBCO layers between 565 and 885 nm, and total thickness between 1.13 and 5.31 μm. For the thinner quasi-multilayer, DC magnetization studies showed an increase in the critical current density Jc at all fields in comparison with a pure YBCO reference sample, while the thicker samples showed an increased Jc only in high fields. We have also investigated the frequency dependence of Jc from AC susceptibility studies and found that the pinning potential is well described by a logarithmic dependence on current density. Pinning potentials in PrBCO/YBCO quasi-multilayers also proved to be higher than in the reference sample at high fields. From angle-dependent transport measurements we have found indications of strong pinning centres induced by the (PrBCO) nano-dots, both isotropic and c-axis correlated.  相似文献   

13.
We studied the effect of TiO2 doping on flux pinning and superconducting properties of a melt-grown (Nd0.33Eu0.33Gd0.33) Ba2Cu3Oy + 35 mol% Gd2BaCuO5 (70 nm in size) composite (NEG-123) processed in Ar–1% O2 atmosphere. As indicated by similar, sharp superconducting transitions, the small quantities of TiO2 used in our experiments did not deteriorate superconducting properties of the NEG material. Transmission electron microscopy (TEM) analysis found 20–50 nm Ti-based particles in the NEG-123 matrix. However, we have not observed the clouds of <10 nm sized particles in the NEG-123 matrix, as in the case of recently reported NEG-123 composites doped by Mo and Nb nanoparticles. Nevertheless, quite a good JcB performance in the 0.1 mol% Ti-doped sample, namely 550 kA/cm2 at the self-field and at the secondary peak field (4.5 T) was achieved at 65 K, while 320 kA/cm2 was obtained at zero-field at 77 K, and 50 kA/cm2 at 90.2 K. The pinning effectiveness decreased with increasing Ti content above 0.2 mol%. The analysis of the pinning force showed that higher concentration of Ti (>0.2 mol%) increased the amount of normal pins (δl pinning), indicated by the Fp(h) peak shift from h = 0.42–0.36. The maximum pinning effect in a broad field range could be achieved by optimizing Ti content and adding sub-micron Gd-211 particles.  相似文献   

14.
YBa2Cu3O7?x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature (T) and magnetic field (H) ranges and by transmission electron microscopy (TEM). The critical current density Jc was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of Jc on c-axis pin spacing dc. At low T and H, Jc increased with decreasing dc, reaching the very high Jc  48 MA/cm2 ~20% of the depairing current density Jd at 10 K, self-field and dc  10 nm, but at higher T and H when TAD effects become significant, Jc was optimized at larger dc because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields Hirr(77 K) greater than 7 T and maximum bulk pinning forces Fp,max(77 K) greater than 7–8 GN/m3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes Jc at all T and H.  相似文献   

15.
CuBa2Ca3Cu4O12−y (Cu:1234) high-temperature superconductors (HTS) doped with up to 2% Zn were grown using the high-pressure synthesis technique. Magnetization loops of the samples were measured at various temperatures between 5 and 77.3 K and magnetic fields up to 14 T. Critical current densities Jc of the samples were estimated using the critical state model. The results show that Zn-induced pinning centers increase Jc of Cu:1234 several times, depending on field and temperature. From the experimentally determined field-temperature region in which a higher Zn concentration lead to a higher Jc, we suggest the existence of a cross-over from quite efficient, extended (in the c-axes direction) pinning centers to point-like (inefficient) pinning centers at a certain temperature, depending on field. This effect can be attributed to the fact that, unlike other HTS, in Cu:1234 there is a second critical temperature Tc2 of about 70–80 K (in zero field, and 50–60 K in 15 T), related to the over-doping of pyramidal basal plane (outer CuO2 plane).  相似文献   

16.
Sm1+xBa2?xCu3+yO7?δ (SmBCO) films were directly deposited on the epi-MgO/IBAD-MgO/Y2O3/Al2O3/Hastelloy template by co-evaporation using the evaporation using drum in dual chambers (EDDC) system without the buffer layer in order to investigate the effect of the composition ratios on superconducting property, microstructure and texture of SmBCO film. The films with gradient composition ratios of Sm:Ba:Cu were deposited using a shield with an opening which was placed between the substrate and the boats. The highest Ic of 52 A (corresponding to Jc = 1.6 MA/cm2 and a thickness of 800 nm) was observed at 77 K in self field at a composition x = 0.01–0.05 and y = ?0.23 to ?0.46. When the composition ratio is outside this range, the Ic value rapidly decreased. The superconducting critical current was highly dependent on the composition ratio. As the composition ratio is farther away from that of the highest Ic, the SmBCO (1 0 3) peak intensity increased and the amount of a-axis oriented parts increased. A dense microstructure with round-shape grains was observed in the region showing the highest Ic. The optimum composition ratio can be found by analyzing films deposited with variable deposition rates of each depositing element.  相似文献   

17.
High critical current density YBa2Cu3O7?x (YBCO) films were prepared by solution deposition of aqueous non-fluorine precursors. Non-fluorine polymer-assisted deposition (PAD) processes utilizing rheology modifiers and chelating agents were used to produce 50 nm films with a critical current density (Jc) over 3 MA/cm2 and 400 nm films with Jc > 1 MA/cm2. Tc measurements indicated that films have Tc values near 90 K. The total heat treatment time to produce these high performance films was less than 4 h. Rheology modifiers such as polyvinyl alcohol (PVA) and hydroxyethyl cellulose (HEC) were used to increase the thickness of deposited films independent of the solution cation concentration. Chelating agents such as polyethylene glycol (PEG) and sucrose increased the barium ion solubility. Nitrate crystallization during deposition was controlled through rapid drying with vacuum and coating with hot solutions.  相似文献   

18.
Crystalline defects on the nano-scale were successfully introduced into YBCO high-temperature superconductors (HTS) by ZrO2 nanometer particles addition in order to strongly pin the quantized vortices. Three batches of ZrO2 nano-particles with different particle size distributions were used. The corresponding mean nano-particle diameters are respectively, 287, 536 and 764 nm. Serving as artificial pinning centers (APC), non-superconducting nano-particles cause a remarkable enhancement of critical current density (Jc) at T = 77 K. This improvement has been shown to depend on the size of APC. The pinning strength of nano-particles inclusions has been found to be greater with wide size dispersed nano-particles. Our results indicate that pinning properties and vortex dynamics depend on the size of APCs. The introduction of APCs with controlled size is indispensable to achieve a high Jc.  相似文献   

19.
We have reported SmBa2Cu3Oy (SmBCO) films on single crystalline substrates prepared by low-temperature growth (LTG) technique. The LTG-SmBCO films showed high critical current densities in magnetic fields compared with conventional SmBCO films prepared by pulsed laser deposition (PLD) method. In this study, to enhance critical current (Ic) in magnetic field, we fabricated thick LTG-SmBCO films on metal substrates with ion-beam assisted deposition (IBAD)-MgO buffer and estimated the Ic and Jc in magnetic fields.All the SmBCO films showed c-axis orientation and cube-on-cube in-plane texture. Tc of the LTG-SmBCO films were 93.1–93.4 K. Jc and Ic of a 0.5 μm-thick SmBCO film were 3.0 MA/cm2 and 150 A/cm-width at 77 K in self-field, respectively. Those of a 2.0 μm-thick film were 1.6 MA/cm2 and 284 A/cm-width respectively. Although Ic increased with the film thickness increasing up to 2 μm, the Ic tended to be saturated in 300 A/cm-width. From a cross sectional TEM image of the SmBCO film, we recognized a-axis oriented grains and 45° grains and Cu–O precipitates. Because these undesired grains form dead layers, Ic saturated above a certain thickness. We achieved that Ic in magnetic fields of the LTG-SmBCO films with a thickness of 2.0 μm were 88 A/cm-width at 1 T and 28 A/cm-width at 3 T.  相似文献   

20.
The YBa2Cu3O7?x (Y123) textured bulk superconductors with various amounts of nanometer alumina particles were fabricated by a seeded infiltration and growth process. The addition of nanometer alumina was found to be effective for an improvement of the superconducting properties. The critical current density (Jc) values were increased twice in self field with a slight addition amount of nanometer alumina particles (maximum Jc at 0.01 wt.% alumina addition). The present work suggests that the use of insulating inclusions in the nanometer sub-scale can stabilize the flux-line lattice and greatly enhance the pinning capabilities of the infiltrated samples. No refinement of Y211 particles was observed with alumina addition. The Jc improvement by nanometer alumina inclusions is likely rendered to the insulating nano-pinning centers that have been successfully embedded into superconducting Y123 matrix. On the other hand, we examined the effect of the pinning centers size on the superconducting properties of infiltrated YBCO bulk samples. To this effect insulating nano-pinning centers with two different size distributions has been successfully incorporated within YBCO matrix of bulk superconductor by slightly doping with nano-particle alumina dispersions. Two alumina nano-particle dispersions with mean size diameters of about 20 nm and 130 nm were used. It was shown that the size of the pinning centers can affect considerably the Jc performances and the pinning mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号