首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
This paper is concerned with the limit relations from the Euler equations of one‐dimensional compressible fluid flow and the magnetohydrodynamics equations to the simplified transport equations, where the δ‐shock waves occur in their Riemann solutions of the latter two equations. The objective is to prove that the Riemann solutions of the perturbed equations coming from the one‐dimensional simplified Euler equations and the magnetohydrodynamics equations converge to the corresponding Riemann solutions of the simplified transport equations as the perturbation parameterx ε tends to zero. Furthermore, the result can also be generalized to more general situations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The formation of vacuum state and delta shock wave are observed and studied in the limits of Riemann solutions for the one-dimensional isentropic drift-flux model of compressible two-phase flows by letting the pressure in the mixture momentum equation tend to zero. It is shown that the Riemann solution containing two rarefaction waves and one contact discontinuity turns out to be the solution containing two contact discontinuities with the vacuum state between them in the limiting situation. By comparison, it is also proved rigorously in the sense of distributions that the Riemann solution containing two shock waves and one contact discontinuity converges to a delta shock wave solution under this vanishing pressure limit.  相似文献   

3.
In this paper, we consider the Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady simple wave flow of an isentropic, inviscid and perfectly conducting compressible fluid, subjected to a transverse magnetic field. This class of equations includes, as a special case, the equations of isentropic gasdynamics. We study the shock and rarefaction waves and their properties, and discuss the geometry of shock curves using the Riemann invariant coordinates. Under certain conditions, we show the existence and uniqueness of the solution to the Riemann problem for arbitrary initial data, and then discuss the vacuum state in isentropic magnetogasdynamics. Finally, we discuss numerical results for different initial data, and discuss all possible interactions of elementary waves. It is noticed that although the magnetogasdynamic system is more complex than the corresponding gasdynamic system, all the parallel results remain identical. However, unlike the ordinary gasdynamic case, the solution inside rarefaction waves in magnetogasdynamics cannot be obtained directly and explicitly; indeed, it requires an extra iteration procedure. It is also observed that the presence of a magnetic field makes both the shock and rarefaction stronger compared to what they would have been in the absence of a magnetic field.  相似文献   

4.
In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the flux perturbation vanishes,they converge to the delta-shock and vacuum state solutions of the zero-pressure flow,respectively.Secondly,we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure.Furthermore,we rigorously prove that,as the two-parameter flux perturbation vanishes,any Riemann solution containing two shock waves tends to a delta-shock solution to the zero-pressure flow;any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state.Finally,numerical results are given to present the formation processes of delta shock waves and vacuum states.  相似文献   

5.
We present a global solution to a Riemann problem for the pressure gradient system of equations.The Riemann problem has initially two shock waves and two contact discontinuities. The angle between the two shock waves is set initially to be close to 180 degrees. The solution has a shock wave that is usually regarded as a free boundary in the self-similar variable plane. Our main contribution in methodology is handling the tangential oblique derivative boundary values.  相似文献   

6.
In this paper, a few classes of exact solutions are obtained using the differential constraints method for generalized gas dynamics equations. The solutions to Riemann problems for two different kinds of initial data are determined with a complete characterization of the solutions through shock waves and/or rarefaction waves.  相似文献   

7.
This paper is devoted to studying the simplified nonlinear chromatography equations by introducing the change of state variables. The Riemann solutions containing delta shock waves are presented. In order to study wave interactions of delta shock waves with elementary waves, the global structure of solutions is constructed completely when the initial data are taken as three pieces of constants and the delta shock waves are included. In particular, the strength of delta shock wave is expressed explicitly and the delta contact discontinuity is discovered during the process of wave interactions. Moreover, by analyzing the limits of the solutions as the middle region vanishes, we observe that the Riemann solutions are stable for such a local small perturbation of the Riemann initial data.  相似文献   

8.
The Riemann problems for the Euler system of conservation laws of energy and momentum in special relativity as pressure vanishes are considered. The Riemann solutions for the pressureless relativistic Euler equations are obtained constructively. There are two kinds of solutions, the one involves delta shock wave and the other involves vacuum. The authors prove that these two kinds of solutions are the limits of the solutions as pressure vanishes in the Euler system of conservation laws of energy and momentum in special relativity.  相似文献   

9.
We present a phase decomposition approach to deal with the generalized Rankine–Hugoniot relations and then the Riemann problem for a model of two-phase flows. By investigating separately the jump relations for equations in conservative form in the solid phase, we show that the volume fractions can change only across contact discontinuities. Then, we prove that the generalized Rankine–Hugoniot relations are reduced to the usual form. It turns out that shock waves and rarefaction waves remain on one phase only, and the contact waves serve as a bridge between the two phases. By decomposing Riemann solutions into each phase, we show that Riemann solutions can be constructed for large initial data. Furthermore, the Riemann problem admits a unique solution for an appropriate choice of initial data.  相似文献   

10.
The analytical solutions of the Riemann problem for the isentropic Euler system with the logarithmic equation of state are derived explicitly for all the five different cases. The concentration and cavitation phenomena are observed and analyzed during the process of vanishing pressure in the Riemann solutions. It is shown that the solution consisting of two shock waves converges to a delta shock wave solution as well as the solution consisting of two rarefaction waves converges to a solution consisting of four contact discontinuities together with vacuum states with three different virtual velocities in the limiting situation.  相似文献   

11.
Using a multidimensional super Riemann theta function, we propose two key theorems for explicitly constructing multiperiodic super Riemann theta function periodic wave solutions of supersymmetric equations in the superspace ΛN+1,M, which is a lucid and direct generalization of the super-Hirota-Riemann method. Once a supersymmetric equation is written in a bilinear form, its super Riemann theta function periodic wave solutions can be directly obtained by using our two theorems. As an application, we present a supersymmetric Korteweg-de Vries-Burgers equation. We study the limit procedure in detail and rigorously establish the asymptotic behavior of the multiperiodic waves and the relations between periodic wave solutions and soliton solutions. Moreover, we find that in contrast to the purely bosonic case, an interesting phenomenon occurs among the super Riemann theta function periodic waves in the presence of the Grassmann variable. The super Riemann theta function periodic waves are symmetric about the band but collapse along with the band. Furthermore, the results can be extended to the case N > 2; here, we only consider an existence condition for an N-periodic wave solution of a general supersymmetric equation.  相似文献   

12.
The study presented in this work shows that the viscous profile entropy criterion is too selective in reducing the number of solutions to guarantee existence of stable weak self-similar Riemann solutions to conservation laws. This result is shown on a particular quadratic model derived from the three-phase flow equations used in petroleum engineering. The viscosity matrix considered in this work derives from capillary pressures. The Riemann initial data is hyperbolic and corresponds to a Lax 1-shock that does not admit a viscous profile. The nonexistence of a profile in this example is due to the presence of a limit cycle in the vector field associated with the viscous profile entropy criterion.To establish the main result of this work, a complete list of possibilities that could lead to a solution, is examined. This list includes solutions that consist of only classical waves and the solutions that contain at least one nonclassical (shock) wave. The construction of solutions breaks down because either the shock waves do not satisfy the viscous entropy criterion, or the speeds of the waves that comprise a solution are decreasing. To the author's knowledge, this is the first result on nonexistence of stable solutions for models that allow nonclassical (transitional) shock waves.The results presented in this paper are a combination of analytical and numerical work. The theoretical ideas and techniques derive from the bifurcation theory of vector fields and the theory of weak solutions of conservation laws. These are combined with numerical results when no theory is available.  相似文献   

13.
The study presented in this work shows that the viscous profile entropy criterion is too selective in reducing the number of solutions to guarantee existence of stable weak self-similar Riemann solutions to conservation laws. This result is shown on a particular quadratic model derived from the three-phase flow equations used in petroleum engineering. The viscosity matrix considered in this work derives from capillary pressures. The Riemann initial data are hyperbolic and correspond to a Lax 1-shock that does not admit a viscous profile. The nonexistence of a profile in this example is due to the presence of a limit cycle in the vector field associated with the viscous profile entropy criterion.To establish the main result of this work, a complete list of possibilities that could lead to a solution, is examined. This list includes solutions that consist of only classical waves and the solutions that contain at least one nonclassical (shock) wave. The construction of solutions breaks down because either the shock waves do not satisfy the viscous entropy criterion or the speeds of the waves that comprise a solution are decreasing. To the author's knowledge, this is the first result on nonexistence of stable solutions for models that allow nonclassical (transitional) shock waves.The results presented in this paper are a combination of analytical and numerical work. The theoretical ideas and techniques derive from the bifurcation theory of vector fields and the theory of weak solutions of conservation laws. These are combined with numerical results when no theory is available.  相似文献   

14.
Using the invariance group properties of the governing systemof partial differential equations (PDEs), admitting Lie groupof point transformations with commuting infinitesimal generators,we obtain exact solutions to the system of PDEs describing one-dimensionalunsteady planar and cylindrically symmetric motions in magnetogasdynamicsinvolving shock waves. Some appropriate canonical variablesare characterised that transform the equations at hand to anequivalent autonomous form, the constant solutions of whichcorrespond to non-constant solutions of the original system.The governing system of PDEs includes as a special case theEuler's equations of non-isentropic gasdynamics. It is interestingto remark that in the absence of magnetic field, one of theexact solutions obtained here is precisely the blast wave solutionobtained earlier using a different method of approach. A particularsolution to the governing system, which exhibits space–timedependence, is used to study the wave pattern that finally developswhen a magnetoacoustic wave impacts with a shock. The influenceof magnetic field strength on the evolutionary behaviour ofincident and reflected waves and the jump in shock acceleration,after collision, are studied.  相似文献   

15.
The interaction between shock waves and rarefaction waves is numerically studied using the one-dimensional Euler equations for an ideal gas. A specific form of solutions, which are called contact regions, is detected. They represent extended zones with continuously varying density and temperature at constant pressure and velocity. It is shown that, at long times, the solutions to the interaction problem tend to those to the Riemann problems with the contact discontinuity replaced by a contact region.  相似文献   

16.
17.
A degenerate parabolic system of equations of two-phase multicomponent filtration is considered. It is shown that this system can be treated as a system of conservation laws and the notions developed in the corresponding theory, such as hyperbolicity, shock waves, Hugoniot relations, stability conditions, Riemann problem, entropy, etc., can be applied to this system. The specific character of the use of such notions in the case of multicomponent filtration is demonstrated. An example of two-component mixture is used to describe the specific properties of solutions of the Riemann problem.  相似文献   

18.
This paper is devoted to the interactions of the delta shock waves with the shock waves and the rarefaction waves for the simplified chromatography equations. The global structures of solutions are constructed completely if the delta shock waves are included when the initial data are taken three piece constants and then the stability of Riemann solutions is also analyzed with the vanishing middle region. In particular, the strength of delta shock wave is expressed explicitly and the delta contact discontinuity is discovered during the process of wave interaction.  相似文献   

19.
In this paper, based on a multidimensional Riemann theta function, a lucid and straightforward generalization of the Hirota-Riemann method is presented to explicitly construct multiperiodic Riemann theta functions periodic wave solutions for nonlinear equations such as the Caudrey-Dodd-Gibbon-Sawada-Kotera equation and (2+1)-dimensional breaking soliton equation. Among these periodic waves, the one-periodic waves are well-known cnoidal waves, their surface pattern is one-dimensional, and often they are used as one-dimensional models of periodic waves. The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional so that they have two independent spatial periods in two independent horizontal directions. A limiting procedure is presented to analyze in detail, asymptotic behavior of the multiperiodic waves and the relations between the periodic wave solutions and soliton solutions are rigorously established. This generalized Hirota-Riemann method can also be demonstrated on a class variety of nonlinear difference equations such as Toeplitz lattice equation.  相似文献   

20.
We investigate the zero dissipation limit problem of the one-dimensional compressible isentropic Navier-Stokes equations with Riemann initial data in the case of the composite wave of two shock waves.It is shown that the unique solution to the Navier-Stokes equations exists for all time,and converges to the Riemann solution to the corresponding Euler equations with the same Riemann initial data uniformly on the set away from the shocks,as the viscosity vanishes.In contrast to previous related works,where either the composite wave is absent or the efects of initial layers are ignored,this gives the frst mathematical justifcation of this limit for the compressible isentropic Navier-Stokes equations in the presence of both composite wave and initial layers.Our method of proof consists of a scaling argument,the construction of the approximate solution and delicate energy estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号