首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the numerical time integration of a class of viscous wave equations by means of Runge–Kutta methods. The viscous wave equation is an extension of the standard second-order wave equation including advection–diffusion terms differentiated in time. The viscous wave equation can be very stiff so that for time integration traditional explicit methods are no longer efficient. A-Stable Runge–Kutta methods are then very good candidates for time integration, in particular diagonally implicit ones. Special attention is paid to the question how the A-Stability property can be translated to this non-standard class of viscous wave equations.   相似文献   

2.
Multirate time stepping is a numerical technique for efficiently solving large-scale ordinary differential equations (ODEs) with widely different time scales localized over the components. This technique enables one to use large time steps for slowly varying components, and small steps for rapidly varying ones. Multirate methods found in the literature are normally of low order, one or two. Focusing on stiff ODEs, in this paper we discuss the construction of a multirate method based on the fourth-order RODAS method. Special attention is paid to the treatment of the refinement interfaces with regard to the choice of the interpolant and the occurrence of order reduction. For stiff, linear systems containing a stiff source term, we propose modifications for the treatment of the source term which overcome order reduction originating from such terms and which we can implement in our multirate method.  相似文献   

3.
The three-level explicit scheme is efficient for numerical approximation of the second-order wave equations. By employing a fourth-order accurate scheme to approximate the solution at first time level, it is shown that the discrete solution is conditionally convergent in the maximum norm with the convergence order of two. Since the asymptotic expansion of the difference solution consists of odd powers of the mesh parameters (time step and spacings), an unusual Richardson extrapolation formula is needed in promoting the second-order solution to fourth-order accuracy. Extensions of our technique to the classical ADI scheme also yield the maximum norm error estimate of the discrete solution and its extrapolation. Numerical experiments are presented to support our theoretical results.  相似文献   

4.
This paper presents a class of parallel numerical integration methods for stiff systems of ordinary differential equations which can be partitioned into loosely coupled sub-systems. The formulas are called decoupled backward differentiation formulas, and they are derived from the classical formulas by restricting the implicit part to the diagnonal sub-system. With one or several sub-systems allocated to each processor, information only has to be exchanged after completion of a step but not during the solution of the nonlinear algebraic equations.The main emphasis is on the formula of order 1, the decoupled implicit Euler formula. It is proved that this formula even for a wide range of multirate formulations has an asymptotic global error expansion permitting extrapolation. Besides, sufficient conditions for absolute stability are presented.  相似文献   

5.
We describe an adaptive mesh refinement finite element method-of-lines procedure for solving one-dimensional parabolic partial differential equations. Solutions are calculated using Galerkin's method with a piecewise hierarchical polynomial basis in space and singly implicit Runge-Kutta (SIRK) methods in time. A modified SIRK formulation eliminates a linear systems solution that is required by the traditional SIRK formulation and leads to a new reduced-order interpolation formula. Stability and temporal error estimation techniques allow acceptance of approximate solutions at intermediate stages, yielding increased efficiency when solving partial differential equations. A priori energy estimates of the local discretization error are obtained for a nonlinear scalar problem. A posteriori estimates of local spatial discretization errors, obtained by order variation, are used with the a priori error estimates to control the adaptive mesh refinement strategy. Computational results suggest convergence of the a posteriori error estimate to the exact discretization error and verify the utility of the adaptive technique.This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR-90-0194; the U.S. Army Research Office under Contract Number DAAL 03-91-G-0215; by the National Science Foundation under Grant Number CDA-8805910; and by a grant from the Committee on Research, Tulane University.  相似文献   

6.
Splitting, or decomposition, methods have been widely used for achieving higher computational efficiency in solving wave equations. A major concern has remained, however, if the wave number involved is exceptionally large. In the case, merits of a conventional splitting method may diminish due to the fact that tiny discretization steps need to be employed to compensate high oscillations. This paper studies an alternative way for solving highly oscillatory paraxial wave problems via a modified splitting strategy. In the process, an exponential transformation is first introduced to convert the underlying differential equation to coupled nonlinear equations. Then the resulted oscillation-free system is treated by a Local-One-Dimensional (LOD) scheme for desired accuracy, efficiency and computability. The splitting method acquired is asymptotically stable and easy to use. Computational experiments are given to illustrate our numerical procedures.  相似文献   

7.
During the past few years, the idea of using meshless methods for numerical solution of partial differential equations (PDEs) has received much attention throughout the scientific community, and remarkable progress has been achieved on meshless methods. The meshless local Petrov-Galerkin (MLPG) method is one of the “truly meshless” methods since it does not require any background integration cells. The integrations are carried out locally over small sub-domains of regular shapes, such as circles or squares in two dimensions and spheres or cubes in three dimensions. In this paper the MLPG method for numerically solving the non-linear two-dimensional sine-Gordon (SG) equation is developed. A time-stepping method is employed to deal with the time derivative and a simple predictor-corrector scheme is performed to eliminate the non-linearity. A brief discussion is outlined for numerical integrations in the proposed algorithm. Some examples involving line and ring solitons are demonstrated and the conservation of energy in undamped SG equation is investigated. The final numerical results confirm the ability of proposed method to deal with the unsteady non-linear problems in large domains.  相似文献   

8.
A fundamental research is carried out into convergence and stability properties of IMEX (implicit–explicit) Runge–Kutta schemes applied to reaction–diffusion equations. It is shown that a fully discrete scheme converges if it satisfies certain conditions using a technique of the B-convergence analysis, developed by Burrage, Hundsdorfer and Verwer in 1986. Stability of the schemes is also examined on the basis of a scalar test equation, proposed by Frank, Hundsdorfer and Verwer in 1997.  相似文献   

9.
This paper is concerned with a compact locally one-dimensional (LOD) finite difference method for solving two-dimensional nonhomogeneous parabolic differential equations. An explicit error estimate for the finite difference solution is given in the discrete infinity norm. It is shown that the method has the accuracy of the second-order in time and the fourth-order in space with respect to the discrete infinity norm. A Richardson extrapolation algorithm is developed to make the final computed solution fourth-order accurate in both time and space when the time step equals the spatial mesh size. Numerical results demonstrate the accuracy and the high efficiency of the extrapolation algorithm.  相似文献   

10.
Stability of IMEX (implicit–explicit) Runge–Kutta methods applied to delay differential equations (DDEs) is studied on the basis of the scalar test equation du/dt=λu(t)+μu(t-τ)du/dt=λu(t)+μu(t-τ), where ττ is a constant delay and λ,μλ,μ are complex parameters. More specifically, P-stability regions of the methods are defined and analyzed in the same way as in the case of the standard Runge–Kutta methods. A new IMEX method which possesses a superior stability property for DDEs is proposed. Some numerical examples which confirm the results of our analysis are presented.  相似文献   

11.
In this paper, a new locally one-dimensional (LOD) scheme with error of O(Δt4+h4) for the two-dimensional wave equation is presented. The new scheme is four layer in time and three layer in space. One main advantage of the new method is that only tridiagonal systems of linear algebraic equations have to be solved at each time step. The stability and dispersion analysis of the new scheme are given. The computations of the initial and boundary conditions for the two intermediate time layers are explicitly constructed, which makes the scheme suitable for performing practical simulation in wave propagation modeling. Furthermore, a comparison of our new scheme and the traditional finite difference scheme is given, which shows the superiority of our new method.  相似文献   

12.
Hamiltonian PDEs have some invariant quantities, which would be good to conserve with the numerical integration. In this paper, we concentrate on the nonlinear wave and Schrödinger equations. Under hypotheses of regularity and periodicity, we study how a symmetric space discretization makes that the space discretized system also has some invariants or `nearly' invariants which well approximate the continuous ones. We conjecture some facts which would explain the good numerical approximation of them after time integration when using symplectic Runge-Kutta methods or symmetric linear multistep methods for second-order systems.  相似文献   

13.
In this paper we consider a hyperbolic equation, with a memory term in time, which can be seen as a singular perturbation of the heat equation with memory. The qualitative properties of the solutions of the initial boundary value problems associated with both equations are studied. We propose numerical methods for the hyperbolic and parabolic models and their stability properties are analyzed. Finally, we include numerical experiments illustrating the performance of those methods.  相似文献   

14.
It is well known that high stage order is a desirable property for implicit Runge-Kutta methods. In this paper it is shown that it is always possible to construct ans-stage IRK method with a given stability function and stage orders−1 if the stability function is an approximation to the exponential function of at least orders. It is further indicated how to construct such methods as well as in which cases the constructed methods will be stiffly accurate.  相似文献   

15.
Iterated splittings seem attractive in view of consistency and local accuracy. In this note it will be shown, however, that for stiff systems the stability properties are quite poor. Specific Runge–Kutta implementations can improve stability, but this leads to classes of methods that are better studied in their own right.  相似文献   

16.
We deal with the time-dependent Navier–Stokes equations (NSE) with Dirichlet boundary conditions on the whole domain or, on a part of the domain and open boundary conditions on the other part. It is shown numerically that combining the penalty-projection method with spatial discretization by the Marker And Cell scheme (MAC) yields reasonably good results for solving the above-mentioned problem. The scheme which has been introduced combines the backward difference formula of second-order (BDF2, namely Gear’s scheme) for the temporal approximation, the second-order Richardson extrapolation for the nonlinear term, and the penalty-projection to split the velocity and pressure unknowns. Similarly to the results obtained for other projection methods, we estimate the errors for the velocity and pressure in adequate norms via the energy method.  相似文献   

17.
We consider a system of ordinary differential equations describing a slow-fast dynamical system, in particular, a predator-prey system that is highly susceptible to local time variations. This model exhibits coexistence of predatorprey dynamics in the case when the prey population grows much faster than that of the predators with a quite diversified time response. For particular parametric values their interactions show a stable relaxation oscillation in the positive octant. Such characteristics are di?cult to mimic using conventional time integrators that are used to solve systems of ordinary di?erential equations. To resolve this, we design and analyze multirate time integration methods to solve a mathematical model for a slow-fast dynamical system. Proposed methods are based on using extrapolation multirate discretisation algorithms. Through these methods, we reduce the integration time by integrating the slow sub-system with a larger step length than the fast sub-system. This allows us to efficiently solve multiscale ordinary differential equations. Besides theoretical results, we provide thorough numerical experiments which confirm that these multirate schemes outperform corresponding single-rate schemes substantially both in terms of computational work and CPU times.  相似文献   

18.
This paper concerns with numerical methods for the treatment of differential equations of fractional order. Our attention is concentrated on fractional multistep methods of both implicit and explicit type, for which order conditions and stability properties are investigated. Dedicated to the memory of Professor Aldo Cossu  相似文献   

19.
A second-order scheme for the Gray–Scott (GS) model used to describe the pattern formation is studied. The linear part of the GS equation for the time derivative and the viscous terms is discretized implicitly, while the other (or nonlinear) part of the GS equation explicitly. Galerkin finite element approximation methods are presented and analyzed, as well as methods for solving the resulting system of equations. The optimal L2L2-norm error estimates are derived. Numerical experiments are presented.  相似文献   

20.
This work deals with the efficient numerical solution of a class of nonlinear time-dependent reaction-diffusion equations. Via the method of lines approach, we first perform the spatial discretization of the original problem by applying a mimetic finite difference scheme. The system of ordinary differential equations arising from that process is then integrated in time with a linearly implicit fractional step method. For that purpose, we locally decompose the discrete nonlinear diffusion operator using suitable Taylor expansions and a domain decomposition splitting technique. The totally discrete scheme considers implicit time integrations for the linear terms while explicitly handling the nonlinear ones. As a result, the original problem is reduced to the solution of several linear systems per time step which can be trivially decomposed into a set of uncoupled parallelizable linear subsystems. The convergence of the proposed methods is illustrated by numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号