首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Thermal activation of CpW(NO)(CH(2)CMe(3))(2) (1) in neat hydrocarbon solutions transiently generates the neopentylidene complex, CpW(NO)(=CHCMe(3)) (A), which subsequently activates solvent C-H bonds. For example, the thermolysis of 1 in tetramethylsilane and perdeuteriotetramethylsilane results in the clean formation of CpW(NO)(CH(2)CMe(3))(CH(2)SiMe(3)) (2) and CpW(NO)(CHDCMe(3))[CD(2)Si(CD(3))(3)] (2-d(12)), respectively, in virtually quantitative yields. The neopentylidene intermediate A can be trapped by PMe(3) to obtain CpW(NO)(=CHCMe(3))(PMe(3)) in two isomeric forms (4a-b), and in benzene, 1 cleanly forms the phenyl complex CpW(NO)(CH(2)CMe(3))(C(6)H(5)) (5). Kinetic and mechanistic studies indicate that the C-H activation chemistry derived from 1 proceeds through two distinct steps, namely, (1) rate-determining intramolecular alpha-H elimination of neopentane from 1 to form A and (2) 1,2-cis addition of a substrate C-H bond across the W=C linkage in A. The thermolysis of 1 in cyclohexane in the presence of PMe(3) yields 4a-b as well as the olefin complex CpW(NO)(eta(2)-cyclohexene)(PMe(3)) (6). In contrast, methylcyclohexane and ethylcyclohexane afford principally the allyl hydride complexes CpW(NO)(eta(3)-C(7)H(11))(H) (7a-b) and CpW(NO)(eta(3)-C(8)H(13))(H) (8a-b), respectively, under identical experimental conditions. The thermolysis of 1 in toluene affords a surprisingly complex mixture of six products. The two major products are the neopentyl aryl complexes, CpW(NO)(CH(2)CMe(3))(C(6)H(4)-3-Me) (9a) and CpW(NO)(CH(2)CMe(3))(C(6)H(4)-4-Me) (9b), in approximately 47 and 33% yields. Of the other four products, one is the aryl isomer of 9a-b, namely, CpW(NO)(CH(2)CMe(3))(C(6)H(4)-2-Me) (9c) ( approximately 1%). The remaining three products all arise from the incorporation of two molecules of toluene; namely, CpW(NO)(CH(2)C(6)H(5))(C(6)H(4)-3-Me) (11a; approximately 12%), CpW(NO)(CH(2)C(6)H(5))(C(6)H(4)-4-Me) (11b; approximately 6%), and CpW(NO)(CH(2)C(6)H(5))(2) (10; approximately 1%). It has been demonstrated that the formation of complexes 10 and 11a-b involves the transient formation of CpW(NO)(CH(2)CMe(3))(CH(2)C(6)H(5)) (12), the product of toluene activation at the methyl position, which reductively eliminates neopentane to generate the C-H activating benzylidene complex CpW(NO)(=CHC(6)H(5)) (B). Consistently, the thermolysis of independently prepared 12 in benzene and benzene-d(6) affords CpW(NO)(CH(2)C(6)H(5))(C(6)H(5)) (13) and CpW(NO)(CHDC(6)H(5))(C(6)D(5)) (13-d(6)), respectively, in addition to free neopentane. Intermediate B can also be trapped by PMe(3) to obtain the adducts CpW(NO)(=CHC(6)H(5))(PMe(3)) (14a-b) in two rotameric forms. From their reactions with toluene, it can be deduced that both alkylidene intermediates A and B exhibit a preference for activating the stronger aryl sp(2) C-H bonds. The C-H activating ability of B also encompasses aliphatic substrates as well as it reacts with tetramethylsilane and cyclohexanes in a manner similar to that summarized above for A. All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 4a, 6, 7a, 8a, and 14a have been established by X-ray diffraction methods.  相似文献   

2.
Gentle thermolysis of the 18e alkyl-allyl complex, CpW(NO)(CH(2)CMe(3))(eta(3)-3,3-Me(2)C(3)H(3)) (1), generates a reactive 16e allene intermediate, CpW(NO)(eta(2)-CH(2)=C=CMe(2)) (A), with the concomitant evolution of neopentane via hydrogen abstraction from the dimethylallyl ligand. A has been structurally characterized as its PMe(3) adduct and is capable of effecting single and multiple C-H bond activations of hydrocarbon solvents. For example, the thermal reaction of 1 with cyclohexane leads to the formation of the 18e cyclohexenyl hydrido complex, CpW(NO)(eta(3)-C(6)H(9))(H) (5), as a result of three successive C-H activations of the alkane solvent.  相似文献   

3.
CpMo(NO)(CH(2)CMe(3))(2) (1), a complex with alpha-agostic C-H.Mo interactions, evolves neopentane in neat hydrocarbon solutions at room temperature and forms the transient 16-electron alkylidene complex, CpMo(NO)(=CHCMe(3)), which subsequently activates solvent C-H bonds. Thus, it reacts with tetramethylsilane or mesitylene to form CpMo(NO)(CH(2)CMe(3))(CH(2)SiMe(3)) (2) or CpMo(NO)(CH(2)CMe(3))(eta(2)-CH(2)C(6)H(3)-3,5-Me(2)) (3), respectively, in nearly quantitative yields. Under identical conditions, 1 in p-xylene generates a mixture of sp(2) and sp(3) C-H bond activation products, namely CpMo(NO)(CH(2)CMe(3))(C(6)H(3)-2,5-Me(2)) (4, 73%) and CpMo(NO)(CH(2)CMe(3))(eta(2)-CH(2)C(6)H(4)-4-Me) (5, 27%). In benzene at room temperature, 1 transforms to a mixture of CpMo(NO)(CH(2)CMe(3))(C(6)H(5)) (6) and CpMo(NO)(C(6)H(5))(2) (7) in a sequential manner. Most interestingly, the thermal activation of 6 at ambient temperatures gives rise to two parallel modes of reactivity involving either the elimination of benzene and formation of CpMo(NO)(=CHCMe(3)) or the elimination of neopentane and formation of the benzyne complex, CpMo(NO)(eta(2)-C(6)H(4)). In pyridine, these intermediates are trapped as the isolable 18-electron adducts, CpMo(NO)(=CHCMe(3))(NC(5)H(5)) (8) and CpMo(NO)(eta(2)-C(6)H(4))(NC(5)H(5)) (9), and, in hydrocarbon solvents, they effect the intermolecular activation of aliphatic C-H bonds at room temperature to generate mixtures of neopentyl- and phenyl-containing derivatives. However, the distribution of products resulting from the hydrocarbon activations is dependent on the nature of the solvent, probably due to solvation effects and the presence of sigma- or pi-hydrocarbon complexes on the reaction coordinates of the alkylidene and the benzyne intermediates. The results of DFT calculations on these processes in the gas phase support the existence of such hydrocarbon complexes and indicate that better agreement with experimental observations is obtained when the actual neopentyl ligand rather than the simpler methyl ligand is used in the model complexes.  相似文献   

4.
Mo(PMe(3))(6) cleaves a C-S bond of benzothiophene to give (kappa(2)-CHCHC(6)H(4)S)Mo(PMe(3))(4), which rapidly isomerizes to the olefin-thiophenolate and 1-metallacyclopropene-thiophenolate complexes, (kappa(1),eta(2)-CH(2)CHC(6)H(4)S)Mo(PMe(3))(3)(eta(2)-CH(2)PMe(2)) and (kappa(1),eta(2)-CH(2)CC(6)H(4)S)Mo(PMe(3))(4). The latter two molecules result from a series of hydrogen transfers and are differentiated according to whether the termini of the organic fragments coordinate as olefin or eta(2)-vinyl ligands, respectively. The reactions between Mo(PMe(3))(6) and selenophenes proceed differently from those of the corresponding thiophenes. For example, whereas Mo(PMe(3))(6) reacts with thiophene to give eta(5)-thiophene and butadiene-thiolate complexes, (eta(5)-C(4)H(4)S)Mo(PMe(3))(3) and (eta(5)-C(4)H(5)S)Mo(PMe(3))(2)(eta(2)-CH(2)PMe(2)), selenophene affords the metallacyclopentadiene complex [(kappa(2)-C(4)H(4))Mo(PMe(3))(3)(Se)](2)[Mo(PMe(3))(4)] in which the selenium has been completely abstracted from the selenophene moiety. Likewise, in addition to (kappa(1),eta(2)-CH(2)CC(6)H(4)Se)Mo(PMe(3))(4) and (kappa(1),eta(2)-CH(2)CHC(6)H(4)Se)Mo(PMe(3))(3)(eta(2)-CH(2)PMe(2)), which are counterparts of the species observed in the benzothiophene reaction, the reaction of Mo(PMe(3))(6) with benzoselenophene yields products resulting from C-C coupling, namely [kappa(2),eta(4)-Se(C(6)H(4))(CH)(4)(C(6)H(4))Se]Mo(PMe(3))(2) and [mu-Se(C(6)H(4))(CH)C(CH)(2)(C(6)H(4))](mu-Se)[Mo(PMe(3))(2)][Mo(PMe(3))(2)H].  相似文献   

5.
Thermolysis of Cp*W(NO)(CH2CMe3)(eta(3)-CH2CHCHMe) (1) at ambient temperatures leads to the loss of neopentane and the formation of the eta(2)-diene intermediate, Cp*W(NO)(eta(2)-CH2=CHCH=CH2) (A), which has been isolated as its 18e PMe3 adduct. In the presence of linear alkanes, A effects C-H activations of the hydrocarbons exclusively at their terminal carbons and forms 18e Cp*W(NO)(n-alkyl)(eta(3)-CH2CHCHMe) complexes. Similarly, treatments of 1 with methylcyclohexane, chloropentane, diethyl ether, and triethylamine all lead to the corresponding terminal C-H activation products. Furthermore, a judicious choice of solvents permits the C-H activation of gaseous hydrocarbons (i.e., propane, ethane, and methane) at ambient temperatures under moderately elevated pressures. However, reactions between intermediate A and cyclohexene, acetone, 3-pentanone, and 2-butyne lead to coupling between the eta(2)-diene ligand and the site of unsaturation on the organic molecule. For example, Cp*W(NO)(eta(3),eta(1)-CH2CHCHCH2C(CH2CH3)2O) is formed exclusively in 3-pentanone. When the site of unsaturation is sufficiently sterically hindered, as in the case of 2,3-dimethyl-2-butene, C-H activation again becomes dominant, and so the C-H activation product, Cp*W(NO)(eta(1)-CH2CMe=CMe2)(eta(3)-CH2CHCHMe), is formed exclusively from the alkene and 1. All new complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them have been established by X-ray crystallographic analyses. Finally, the newly formed alkyl ligands may be liberated from the tungsten centers in the product complexes by treatment with iodine. Thus, exposure of a CDCl3 solution of the n-pentyl allyl complex, Cp*W(NO)(n-C5H11)(eta(3)-CH2CHCHMe), to I2 at -60 degrees C produces n-C5H11I in moderate yields.  相似文献   

6.
Zhu G  Parkin G 《Inorganic chemistry》2005,44(26):9637-9639
Mo(PMe(3))(6) and W(PMe(3))(4)(eta(2)-CH(2)PMe(2))H undergo oxidative addition of the O-H bond of RCO(2)H to yield sequentially M(PMe(3))(4)(eta(2)-O(2)CR)H and M(PMe(3))(3)(eta(2)-O(2)CR)(eta(1)-O(2)CR)H(2) (M = Mo and R = Ph, Bu(t); M = W and R = Bu(t)). One of the oxygen donors of the bidentate carboxylate ligand may be displaced by H(2)O to give rare examples of aqua-dihydride complexes, M(PMe(3))(3)(eta(1)-O(2)CR)(2)(OH(2))H(2), in which the coordinated water molecule is hydrogen-bonded to both carboxylate ligands.  相似文献   

7.
This paper reports the organolanthanide-catalyzed intramolecular hydroamination/cyclization of amine-tethered unactivated 1,2-disubstituted alkenes to afford the corresponding mono- and disubstituted pyrrolidines and piperidines using coordinatively unsaturated complexes of the type (eta(5)-Me(5)C(5))(2)LnCH(TMS)(2) (Ln = La, Sm), [Me(2)Si(eta(5)-Me(4)C(5))(2)]SmCH(TMS)(2), and [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) (Ln = Sm, Y, Yb, Lu; E = N, CH) as precatalysts. [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) mediates intramolecular hydroamination/cyclization of sterically demanding amino-olefins to afford disubstituted pyrrolidines in high diastereoselectivity (trans/cis = 16/1) and good to excellent yield. In addition, chiral C(1)-symmetric organolanthanide catalysts of the type [Me(2)Si(OHF)(CpR*)]LnN(TMS)(2) (OHF = eta(5)-octahydrofluorenyl; Cp = eta(5)-C(5)H(3); R* = (-)-menthyl; Ln = Sm, Y), and [Me(2)Si(eta(5)-Me(4)C(5))(CpR*)]SmN(TMS)(2) (Cp = eta(5)-H(3)C(5); R* = (-)-menthyl) mediate asymmetric intramolecular hydroamination/cyclization of amines bearing internal olefins and afford chiral 2-substituted piperidine and pyrrolidine in enantioselectivities as high as 84:16 er at 60 degrees C. The substrate of the structure NH(2)CH(2)CMe(2)CH(2)CH=CH(CH(2))(2)CH=CH(2) is regiospecifically bicyclized by [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) to the corresponding indolizidine skeleton in good yield and high diastereoselectivity. Thermolysis of (eta(5)-Me(5)C(5))(2)LaCH(TMS)(2) in cyclohexane-d(12) at 120 degrees C rapidly releases CH(2)(SiMe(3))(2) and leads to possible formation of fulvene (eta(6)-Me(4)C(5)CH(2)-) species. The thermolysis product readily reverts to active catalysts upon protonolysis by substrate and exhibits the same catalytic activity as the (eta(5),eta(1)-Me(5)C(5))(2)LaCH(TMS)(2) precatalyst at 120 degrees C in the cyclization of cis-2,2-dimethylhept-5-enylamine. Catalytically-active lanthanide-amido complexes (eta(5)-Me(5)C(5))(2)La(NHR)(NH(2)R)(n) and [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]Sm(NHR)(NH(2)R)(n) are shown to be thermally robust species.  相似文献   

8.
The reactions of W(PMe(3))(4)(η(2)-CH(2)PMe(2))H, W(PMe(3))(5)H(2), W(PMe(3))(4)H(4) and W(PMe(3))(3)H(6) towards thiophenes reveal that molecular tungsten compounds are capable of achieving a variety of transformations that are relevant to hydrodesulfurization. For example, sequential treatment of W(PMe(3))(4)(η(2)-CH(2)PMe(2))H with thiophene and H(2) yields the butanethiolate complex, W(PMe(3))(4)(SBu(n))H(3), which eliminates but-1-ene at 100 °C. Likewise, sequential treatment of W(PMe(3))(4)(η(2)-CH(2)PMe(2))H with benzothiophene and H(2) yields W(PMe(3))(4)(SC(6)H(4)Et)H(3), which releases ethylbenzene at 100 °C. Moreover, W(PMe(3))(4)(η(2)-CH(2)PMe(2))H desulfurizes dibenzothiophene to form a dibenzometallacyclopentadiene complex, [(κ(2)-C(12)H(8))W(PMe(3))](μ-S)(μ-CH(2)PMe(2))(μ-PMe(2))[W(PMe(3))(3)].  相似文献   

9.
18e Cp*W(NO)(CH2CMe3)(eta3-allyl) complexes effect concurrent N-H and alpha-C-H bond activations of cyclic, saturated amines under mild conditions, the conversions involving pyrrolidine being shown. In a similar manner, treatment of Cp*W(NO)(CH2CMe3)(eta3-3,3-Me2C3H3) with piperidine at room temperature results in the clean formation of the alkyl amido complex, Cp*W(NO)(CH2CMe3)(NC5H9CMe2CHCH2).  相似文献   

10.
C-H activation of benzene at 26 °C by (η(5)-C(5)Me(5))W(NO)(CH(2)CMe(3))(η(3)-CH(2)CHCHMe) results after 4 h in the production of five new organometallic complexes, only two of which are isomers of the desired (η(5)-C(5)Me(5))W(NO)(C(6)H(5))(η(3)-CH(2)CHCHMe) compound. In contrast, the identical reaction involving the η(5)-C(5)Me(4)H analogue affords only the phenyl complexes during the first 24 h, thereby facilitating their isolation in good yields. This striking difference in reactivity can be attributed to the lesser steric demands of the η(5)-C(5)Me(4)H ligand that result in its complexes reacting at a significantly slower rate.  相似文献   

11.
C-F bond activation of ortho-fluorinated benzalimines 2,6-F(2)C(6)R1R2R3-CH=N-R (1-3) using the electron-rich complex Fe(PMe(3))(4) is reported. With the assistance of the imine group as the anchoring group, bis-chelated iron(II) complexes (C(6)FR1R2R3-CH=N-R)(2)Fe(PMe(3))(2) (4-6) were formed. The reaction of 2,6-difluorobenzylidenenaphthalen-1-amine 2,6-F(2)C(6)H(3)-CH=N-C(10)H(7) (9) with Fe(PMe(3))(4) affords [CNC]-pincer iron(II) complex (C(6)H(3)F-CH=N-C(10)H(6))Fe(PMe(3))(3) (10) through both C-F and C-H bond activation and π-(C=N) coordinate iron(0) complex (C(6)H(3)F-CH=N-C(10)H(7))(2)Fe(PMe(3))(2) (11) with C,C-coupling, while a similar reaction with perfluorobenzylidenenaphthalen-1-amine C(6)F(5)-CH=N-C(10)H(7) (14) gave rise to only [CNC]-pincer iron(II) complex (C(6)F(4)-CH=N-C(10)H(6))Fe(PMe(3))(3) (15). The proposed formation mechanisms of these complexes are discussed. The structures of complexes 5, 6, 10 and 11 were confirmed by X-ray single crystal diffraction.  相似文献   

12.
The molybdenum nitrosyl complex Cp*Mo(NO)(CH2CMe3)(C6H5) reacts at room temperature via elimination of neopentane or benzene to form the transient species Cp*Mo(NO)(=CHCMe3) and Cp*Mo(NO)(eta2-C6H4). These reactive intermediates effect the intermolecular activation of hydrocarbon C-H bonds via the reverse of the transformations by which they are generated. Thermolysis of Cp*Mo(NO)(CH2CMe3)(C6H5) in pyridine yields the adducts Cp*Mo(NO)(=CHCMe3)(NC5H5) and Cp*Mo(NO)(eta2-C6H4)(NC5H5), and the benzyne complex has been characterized by X-ray diffraction.  相似文献   

13.
[Na(2)(thf)(4)(P(4)Mes(4))] (1) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of [NiCl(2)(PEt(3))(2)], [NiCl(2)(PMe(2)Ph)(2)], [PdCl(2)(PBu(n)(3))(2)] or [PdCl(2)(PMe(2)Ph)(2)] to give the corresponding nickel(0) and palladium(0) dimesityldiphosphene complexes [Ni(eta(2)-P(2)Mes(2))(PEt(3))(2)] (2), [Ni(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (3), [Pd(eta(2)-P(2)Mes(2))(PBu(n)(3))(2)] (4) and [Pd(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (5), respectively, via a redox reaction. The molecular structures of the diphosphene complexes 2-5 are described.  相似文献   

14.
The interaction of methoxyethyl functionalized indene compounds (C(9)H(6)-1-R-3-CH(2)CH(2)OMe, R =t-BuNHSiMe(2)(1), Me(3)Si (2), H (3)) with [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5)) produced a series of new ytterbium(II) and europium(II) complexes via tandem silylamine elimination/homolysis of the Ln-N (Ln=Yb, Eu) bond. Treatment of the lanthanide(III) amides [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5) with 2 equiv. of, 1,2 and 3, respectively, produced, after workup, the ytterbium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Yb(II) (6), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Yb(II) (7), (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Yb(II)(8) and the corresponding europium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Eu(II)(9), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Eu(II)(10) and (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Eu(II)(11) in moderate to good yield. In contrast, interaction of the corresponding indene compounds 1, 2 or 3 with the lanthanide amides [(Me(3)Si)(2)N](3)Ln (Ln = Yb, Eu) was not observed, while addition of 0.5 equiv. of anhydrous LiCl to the corresponding reaction mixture produced, after workup, the corresponding ytterbium(II) or europium(II) complexes. All the new compounds were fully characterized by spectroscopic and elemental analyses. The structures of complexes, and were determined by single-crystal X-ray analyses. The catalytic activity of all the ytterbium(II) and europium(II) complexes on MMA polymerization was examined. It was found that all the ytterbium(II) and europium(II) complexes can function as single-component MMA polymerization catalysts. The temperature, solvent and ligand effects on the catalytic activity were studied.  相似文献   

15.
The tetrakis(trimethylphosphine) molybdenum nitrosyl hydrido complex trans-Mo(PMe(3))(4)(H)(NO) (2) and the related deuteride complex trans-Mo(PMe(3))(4)(D)(NO) (2a) were prepared from trans-Mo(PMe(3))(4)(Cl)(NO) (1). From (2)H T(1 min) measurements and solid-state (2)H NMR the bond ionicities of 2a could be determined and were found to be 80.0% and 75.3%, respectively, indicating a very polar Mo--D bond. The enhanced hydridicity of 2 is reflected in its very high propensity to undergo hydride transfer reactions. 2 was thus reacted with acetone, acetophenone, and benzophenone to afford the corresponding alkoxide complexes trans-Mo(NO)(PMe(3))(4)(OCHR'R') (R' = R' = Me (3); R' = Me, R' = Ph (4); R' = R' = Ph (5)). The reaction of 2 with CO(2) led to the formation of the formato-O-complex Mo(NO)(OCHO)(PMe(3))(4) (6). The reaction of with HOSO(2)CF(3) produced the anion coordinated complex Mo(NO)(PMe(3))(4)(OSO(2)CF(3)) (7), and the reaction with [H(Et(2)O)(2)][BAr(F)(4)] with an excess of PMe(3) produced the pentakis(trimethylphosphine) coordinated compound [Mo(NO)(PMe(3))(5)][BAr(F)(4)] (8). Imine insertions into the Mo-H bond of 2 were also accomplished. PhCH[double bond, length as m-dash]NPh (N-benzylideneaniline) and C(10)H(7)CH=NPh (N-1-naphthylideneaniline) afforded the amido compounds Mo(NO)(PMe(3))(4)[NR'(CH(2)R')] (R' = R' = Ph (9), R' = Ph, R' = naphthyl (11)). 9 could not be obtained in pure form, however, its structure was assigned by spectroscopic means. At room temperature 11 reacted further to lose one PMe(3) forming 12 (Mo(NO)PMe(3))(3)[N(Ph)CH(2)C(10)H(6))]) with agostic stabilization. In a subsequent step oxidative addition of the agostic naphthyl C-H bond to the molybdenum centre occurred. Then hydrogen migration took place giving the chelate amine complex Mo(NO)(PMe(3))(3)[NH(Ph)(CH(2)C(10)H(6))] (15). The insertion reaction of 2 with C(10)H(7)N=CHPh led to formation of the agostic compound Mo(NO)(PMe(3))(3)[N(CH(2)Ph)(C(10)H(7))] (10). Based on the knowledge of facile formation of agostic compounds the catalytic hydrogenation of C(10)H(7)N=CHPh and PhN=CHC(10)H(7) with 2 (5 mol%) was tested. The best conversion rates were obtained in the presence of an excess of PMe(3), which were 18.4% and 100% for C(10)H(7)N=CHPh and PhN=CHC(10)H(7), respectively.  相似文献   

16.
The iridium(perfluoropropyl)(vinyl) complex CpIr(PMe(3))(n-C(3)F(7))(CH=CH(2)) (5) has been prepared. It has been characterized by X-ray crystallography, and its ground state conformation in solution has been determined by (19)F{(1)H} HOESY NMR studies. It reacts with the weak acid lutidinium iodide to afford the eta(1)-allylic complex CpIr(PMe(3))((Z)-CH(2)CH=CFC(2)F(5))I (6), which has also been characterized crystallographically. The mechanism of C-F bond activation and C-C bond formation leading to 6 has been elucidated in detail by studying the reaction of 5 with lutidinium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate [LutH(+)B(ArF)(4)(-)], containing a weakly coordinating counteranion. The main kinetic product of this reaction, determined by (19)F{(1)H} HOESY studies at -50 degrees C, is the endo-CpIr(PMe(3))(anti-eta(3)-CH(2)CHCFCF(2)CF(3))[B(ArF)(4)] diastereomer 9, along with a small amount of the exo-syn-isomer 8. Isomer 9 rearranges at -20 degrees C to its exo-anti isomer 7, and subsequently to the thermodynamically favored exo-syn-isomer 8, which has been isolated and crystallographically characterized. Complex 8 reacts with iodide to afford complex6. On the basis of the unambiguously defined kinetically controlled stereochemistry of 9 and 8, a detailed mechanism for the C-F activation/C-C coupling reaction is proposed, the principal conclusion of which is that C-F activation is completely diastereoselective.  相似文献   

17.
A series of octahedral ruthenium silyl hydride complexes, cis-(PMe(3))(4)Ru(SiR(3))H (SiR(3) = SiMe(3), 1a; SiMe(2)CH(2)SiMe(3), 1b; SiEt(3), 1c; SiMe(2)H, 1d), has been synthesized by the reaction of hydrosilanes with (PMe(3))(3)Ru(eta(2)-CH(2)PMe(2))H (5), cis-(PMe(3))(4)RuMe(2) (6), or (PMe(3))(4)RuH(2) (9). Reaction with 6 proceeds via an intermediate product, cis-(PMe(3))(4)Ru(SiR(3))Me (SiR(3) = SiMe(3), 7a; SiMe(2)CH(2)SiMe(3), 7b). Alternatively, 1 and 7 have been synthesized via a fast hydrosilane exchange with another cis-(PMe(3))(4)Ru(SiR(3))H or cis-(PMe(3))(4)Ru(SiR(3))Me, which occurs at a rate approaching the NMR time scale. Compounds 1a, 1b, 1d, and 7a adopt octahedral geometries in solution and the solid state with mutually cis silyl and hydride (or silyl and methyl) ligands. The longest Ru-P distance within a complex is always trans to Si, reflecting the strong trans influence of silicon. The aptitude of phosphine dissociation in these complexes has been probed in reactions of 1a, 1c, and 7a with PMe(3)-d(9) and CO. The dissociation is regioselective in the position trans to a silyl ligand (trans effect of Si), and the rate approaches the NMR time scale. A slower secondary process introduces PMe(3)-d(9) and CO in the other octahedral positions, most likely via nondissociative isomerization. The trans effect and trans influence in 7a are so strong that an equilibrium concentration of dissociated phosphine is detectable (approximately 5%) in solution of pure 7a. Compounds 1a-c also react with dihydrogen via regioselective dissociation of phosphine from the site trans to Si, but the final product, fac-(PMe(3))(3)Ru(SiR(3))H(3) (SiR(3) = SiMe(3), 4a; SiMe(2)CH(2)SiMe(3), 4b; SiEt(3), 4c), features hydrides cis to Si. Alternatively, 4a-c have been synthesized by photolysis of (PMe(3))(4)RuH(2) in the presence of a hydrosilane or by exchange of fac-(PMe(3))(3)Ru(SiR(3))H(3) with another HSiR(3). The reverse manifold - HH elimination from 4a and trapping with PMe(3) or PMe(3)-d(9) - is also regioselective (1a-d(9)() is predominantly produced with PMe(3)-d(9) trans to Si), but is very unfavorable. At 70 degrees C, a slower but irreversible SiH elimination also occurs and furnishes (PMe(3))(4)RuH(2). The structure of 4a exhibits a tetrahedral P(3)Si environment around the metal with the three hydrides adjacent to silicon and capping the P(2)Si faces. Although strong Si...HRu interactions are not indicated in the structure or by IR, the HSi distances (2.13-2.23(5) A) suggest some degree of nonclassical SiH bonding in the H(3)SiR(3) fragment. Thermolysis of 1a in C(6)D(6) at 45-55 degrees C leads to an intermolecular CD activation of C(6)D(6). Extensive H/D exchange into the hydride, SiMe(3), and PMe(3) ligands is observed, followed by much slower formation of cis-(PMe(3))(4)Ru(D)(Ph-d(5)). In an even slower intramolecular CH activation process, (PMe(3))(3)Ru(eta(2)-CH(2)PMe(2))H (5) is also produced. The structure of intermediates, mechanisms, and aptitudes for PMe(3) dissociation and addition/elimination of H-H, Si-H, C-Si, and C-H bonds in these systems are discussed with a special emphasis on the trans effect and trans influence of silicon and ramifications for SiC coupling catalysis.  相似文献   

18.
Addition of primary amines to N-[2-(diphenylphosphanyl)benzoyloxy]succinimide affords 2-diphenylphosphanylbenzamides, Ph2PC6H4C(O)NHR (R = C(CH3)3, 3; R = H, 4; R = CH2CH2CH3, 5; R = CH(CH3)2, 6). Addition of NiCl(eta3-CH2C6H5)(PMe3) to the deprotonated potassium salts of the amides and subsequent treatment of two equivalents of B(C6F5)3 to the resulting products furnishes eta3-benzyl zwitterionic nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta3-CH2C6H5) (R = C6H5, 9; R = C(CH3)3, 10; R = H, 11; R = CH2CH2CH3, 12; R = CH(CH3)2, 13). Solid structures of 9, 11, 13 and the intermediate eta1-benzyl nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta1-CH2C6H5)(PMe3) (R = C6H5, 7; R = C(CH3)3, 8) were determined by X-ray crystallography. When ethylene is added to the eta3-benzyl zwitterionic nickel(II) complexes, butene is obtained by the complexes 9-12 but complex 13 provides very high molecular-weight branched polyethylene (Mw, approximately 1300000) with excellent activity (up to 5200 kg mol-1 h-1 at 100 psi gauge).  相似文献   

19.
The reactivity of W(NPh)(o-(Me3SiN)2C6H4)(py)2 and W(NPh)(o-(Me3SiN)2C6H4)(pic)2 (py=pyridine; pic=4-picoline) with unsaturated substrates has been investigated. Treatment of W(NPh)(o-(Me3SiN)2C6H4)(py)2 with diphenylacetylene or 2,3-dimethyl-1,3-butadiene generates W(NPh)(o-(Me3SiN)2C6H4)(eta2-PhCCPh) and W(NPh)(o-(Me3SiN)2C6H4)(eta4-CH2=C(Me)C(Me)=CH2), respectively, while the addition of ethylene to W(NPh)(o-(Me3SiN)2C6H4)(py)2 generates the known metallacycle W(NPh)(o-(Me3SiN)2C6H4)(CH2CH2CH2CH2). The addition of 2 equiv of acetone to W(NPh)(o-(Me3SiN)2C6H4)(pic)2 provides the azaoxymetallacycle W(NPh)(o-(Me3SiN)2C6H4)(OCH(Me)2)(OC(Me)2-o-C5H3N-p-Me), the result of acetone insertion into the ortho C-H bond of picoline. Similarily, the addition of 2 equiv of RC(O)H [R=Ph, tBu] to W(NPh)(o-(Me3SiN)2C6H4)(py)2 generates W(NPh)(o-(Me3SiN)2C6H4)(OCH2R)(OCHR-o-C5H4N) [R=Ph, tBu,]. In contrast, reaction between W(NPh)(o-(Me3SiN)2C6H4)(py)2 and 2-pyridine carboxaldehyde yields the diolate W(NPh)(o-(Me3SiN)2C6H4)(OCH(C5H4N)CH(C5H4N)O). The synthesis of W(NPh)(o-(Me3SiN)2C6H4)(PMe3)(py)(eta2-OC(H)C6H4-p-Me), formed by the addition of p-tolualdehyde to a mixture of W(NPh)(o-(Me3SiN)2C6H4)(py)2 and PMe3, suggests that an eta2-aldehyde intermediate is involved in the formation of the azaoxymetallacycle, while the isolation of W(NPh)(o-(Me3SiN)2C6H4)(Cl)(OC(Me)(CMe3)-o-C5H4N), formed by the reaction of pinacolone with W(NPh)(o-(Me3SiN)2C6H4)(py)2, in the presence of adventitious CH2Cl2, suggests that the reaction proceeds via the hydride W(NPh)(o-(Me3SiN)2C6H4)(H)(OC(Me)(CMe3)-o-C5H4N).  相似文献   

20.
Tetranuclear cubane-type rare-earth methylidene complexes consisting of four "Cp'LnCH(2)" units, [Cp'Ln(μ(3)-CH(2))](4) (4-Ln; Ln = Tm, Lu; Cp' = C(5)Me(4)SiMe(3)), have been obtained for the first time through CH(4) elimination from the well-defined polymethyl complexes [Cp'Ln(μ(2)-CH(3))(2)](3) (2-Ln) or mixed methyl/methylidene precursors such as [Cp'(3)Ln(3)(μ(2)-Me)(3)(μ(3)-Me)(μ(3)-CH(2))] (3-Ln). The reaction of the methylidene complex 4-Lu with benzophenone leads to C═O bond cleavage and C═C bond formation to give the cubane-type oxo complex [Cp'Lu(μ(3)-O)](4) and CH(2)═CPh(2), while the methyl/methylidene complex 3-Tm undergoes sequential methylidene addition to the C═O group and ortho C-H activation of the two phenyl groups of benzophenone to afford the bis(benzo-1,2-diyl)ethoxy-chelated trinuclear complex [Cp'(3)Tm(3)(μ(2)-Me)(3){(C(6)H(4))(2)C(O)Me}] (6-Tm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号