首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Anionic polymerization of vinyl chloride has been studied. Of the organometallic compounds tested as initiators, only butyllithium was found to initiate polymerization. Polymerization in bulk at 0°C and with tert-butyllithium as initiator gave poly(vinyl chloride) in a yield of 38% with M n = 55,000. Tacticity of the anionic PVC was similar to that of conventional PVC prepared at similar temperatures. Anionic PVC was found to be less branched and more heat-stable than the conventional polymer.  相似文献   

2.
α,ω‐di(iodo) poly(isobornyl acrylate) macroiniators (α,ω‐di(iodo)PIA) with number average molecular weight from M n,TriSEC = 11,456 to M n,TriSEC = 94,361 were synthesized by single electron transfer‐degenerative chain transfer mediated living radical polymerization (SET‐DTLRP) of isobornyl acrylate (IA) initiated with iodoform (CHI3) and catalyzed by sodium dithionite (Na2S2O4) in water at 35 °C. The plots of number average molecular weight vs conversion and ln{[M]0/[M]} vs time are linear, indicating a controlled polymerization. α,ω‐di(iodo) poly(isobornyl acrylate) have been used as a macroinitiator for the SET‐DTLRP of vinyl chloride (VCM) leading to high Tg block copolymers PVC‐b‐PIA‐b‐PVC. The dynamic mechanical thermal analysis of the block copolymers suggests just one phase indicating that copolymer behaves as a single material. This technology provides the possibility of synthesizing materials based on PVC with higher Tg in aqueous medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

3.
Vinyl chloride was polymerized at 59–92% of saturation pressure in a water-suspended system at 45–65°C with an emulsion poly(vinyl chloride) (PVC) latex as a seed. A water-soluble initiator was used in various concentrations. The monomer was continuously charged as vapor from a storage vessel kept at lower temperature. Characterization included determination of molecular-weight distribution and degree of long-chain branching by gel permeation chromatography (GPC) and viscometry, thermal dehydrochlorination, and microscopy. The polymerization rate decreases with decreasing pressure but is reasonable even at the lowest pressure. The molecular weight decreases with decreasing pressure and increasing initiator concentration and also with increasing polymerization temperature, if the initiator concentrations are chosen to give a constant initiator radical concentration. The degree of long-chain branching increases with increasing initiator concentration and decreasing monomer pressure but is unaffected by the polymerization temperature, if the initiator radical concentration is kept constant. The thermal stability decreases with decreasing M n, while the degree of long-chain branching has only a minor influence. The most important factor in the system influencing the molecular parameter is the monomer accessibility.  相似文献   

4.
This work reports the synthesis of several copolymers of poly(vinyl chloride)-b-poly(n-butyl acrylate)-b-Poly(vinyl chloride) prepared by single electron transfer/degenerative chain transfer mediated living radical polymerization (SET-DTLRP) in a two step process: first, a bifunctional macroinitiator of α,ω-di(iodo)poly(butyl acrylate) [α,ω-di(iodo)PBA] was synthesized by SET-DTLRP in water at 30 °C. The obtained macroinitiator was further reinitiated also by SET-DTLRP leading to the formation of the desired product. Several copolymers were synthesized in a 5L pilot reactor with different molecular weights and relative amounts of PBA and PVC. The possibility of synthesizing flexible materials made of PVC without using normal free plasticizes is extremely important for the industry. After processing the materials in a two-roll mill laboratorial equipment, the block copolymers were characterized concerning thermal and mechanical. The materials characterized in this study were prepared in a 5L pilot reactor under similar conditions to be used in industrial scale.  相似文献   

5.
The 100-MHz proton NMR spectra of commercial and laboratory-prepared poly(vinyl chloride) (PVC) have been measured in various solvents at high temperature (80–150°C). Tacticity in PVC was determined by the analysis of the β-proton spectrum. The spectrum was calculated assuming that the PVC chain consists of tetrad sequences of monomer units and that their distribution in the chain is described by a simple Bernoulli-sequence statistics with a Pm (the probability of isotactic placement) of 0.45 for commercial PVC polymerized at 50°C. Tacticity calibration curves based on measurements made for the polymer in pentachloroethane and β-dichlorobenzene were established, and they provide a simple method for the measurement of tacticity in PVC directly from the observed spectra. Excluding samples prepared in butyraldehyde solution, the formation of syndiotactic structures in PVC (prepared by free-radical polymerization) was found to be favored by lowering the polymerization temperature. This preference is due to an increase in the activation enthalpy of 510 cal/mole which is required for forming an isotactic placement in the chain during the propagation step.  相似文献   

6.
Cobalt‐mediated radical polymerizations (CMRPs) utilizing redox initiation are demonstrated to produce poly(vinyl ester) homopolymers derived from vinyl pivalate (VPv) and vinyl benzoate (VBz), and their block copolymers with vinyl acetate (VAc). Combining anhydrous Co(acac)2, lauroyl peroxide, citric acid trisodium salt, and VPv at 30 °C results in controlled polymerizations that yield homopolymers with Mn = 2.5–27 kg/mol with Mw/Mn = 1.20–1.30. Homopolymerizations of scrupulously purified VBz proceed with lower levels of control as evidenced by broader polydispersities over a range of molecular weights (Mn = 4–16 kg/mol; Mw/Mn = 1.34–1.65), which may be interpreted in terms of the decreased nucleophilicity of these less electron donating propagating polymer chain ends. Based on these results, we demonstrate that sequential CMRP reactions present a viable route to microphase separated poly(vinyl ester) block copolymers as shown by small‐angle X‐ray scattering analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
Atom transfer radical polymerization (ATRP) of acrylates in ionic liquid, 1‐butyl‐3‐methylimidazolium hexaflurophospate, with the CuBr/CuBr2/amine catalytic system was investigated. Sequential polymerization was performed by synthesizing AB block copolymers. Polymerization of butyl acrylate (monomer that is only partly soluble in an ionic liquid forming a two‐phase system) proceeded to practically quantitative conversion. If the second monomer (methyl acrylate) is added at this stage, polymerization proceeds, and block copolymer formed is essentially free of homopolymer according to size exclusion chromatographic analysis. The number‐average molecular weight of the copolymer is slightly higher than calculated, but the molecular weight distribution is low (Mw/Mn = 1.12). If, however, methyl acrylate (monomer that is soluble in an ionic liquid) is polymerized at the first stage, then butyl acrylate in the second‐stage situation is different. Block copolymer free of homopolymer of the first block (with Mw/Mn = 1.13) may be obtained only if the conversion of methyl acrylate at the stage when second monomer is added is not higher than 70%. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis confirmed that irreversible deactivation of growing macromolecules is significant for methyl acrylate polymerization at a monomer conversion above 70%, whereas it is still not significant for butyl acrylate even at practically quantitative conversion. These results show that ATRP of butyl acrylate in ionic liquid followed by addition of a second acrylate monomer allows the clean synthesis of block copolymers by one‐pot sequential polymerization even if the first stage is carried out to complete conversion of butyl acrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2799–2809, 2002  相似文献   

8.
Pentaerythritol tetrakis(2‐iodopropionate) was used as a tetrafunctional initiator for the Na2S2O4 catalyzed SET‐DTLRP of n‐butyl acrylate in water at room temperature. The resulting tetrafunctional poly(n‐butyl acrylate) macroinitiator with Mn = 14,864 or Mn = 3627 per arm was used to initiate the SET‐DTLRP of vinyl chloride and provide the first examples of four‐arm star‐block copolymers [PVC‐b‐PBA‐CH(CH3)? CO? O? CH2]4C. The Mn of the PVC segment from each arm of the four‐arm star‐block copolymer varied between 353 and 33,622. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 628–634, 2009  相似文献   

9.
The synthesis of poly(vinyl chloride) (PVC) homopolymers and poly(vinyl chloride)-b-poly(hydroxypropyl acrylate)-b-poly(vinyl chloride) (PVC-b-PHPA-b-PVC) block copolymers via a single electron - degenerative transfer mediated living radical polymerisation was carried out on a pilot scale in industrial facilities. The thermal stability of the products was assessed conductimetrically. The block copolymers, that contained a low content of PHPA (below 12 wt.%), showed thermal stability that was approximately three times greater than that of conventional PVC. Inverse gas chromatography study of the copolymers surface showed that there was a decrease in the dispersive component and greater Lewis acidity and basicity constants were observed relative to those of PVC. The thermal stabilisation of PVC when in the presence of PHPA is explained by the interactions between its functional groups and the structures formed during the thermal degradation. The thermal stability and the surface properties of PVC-b-PHPA-b-PVC were strongly dependent on the molecular weight of the block copolymer. Lewis acid-base interaction parameters were determined and are interpreted as evidence of the PVC-b-PHPA-b-PVC compatibilising function in PVC-wood flour composites.  相似文献   

10.
The accelerated single electron transfer–degenerative chain transfer mediated living radical polymerization (SET–DTLRP) of vinyl chloride (VC) in H2O/tetrahydrofuran (THF) at 25 °C is reported. This process is catalyzed by sodium dithionite (Na2S2O4)‐sodium bicarbonate (NaHCO3). Electron transfer cocatalysts (ETC) 1,1′‐dialkyl‐4,4′‐bipyridinum dihalides or alkyl viologens were also employed in this polymerization. The resulting poly(vinyl chloride) (PVC) has a number‐average molecular weight (Mn) = 2,000–12,000, no detectable amounts of structural defects, and both active chloroiodomethyl and inactive chloromethyl chain ends. The molecular weight distribution of PVC obtained is Mw/Mn = 1.5. The surface active agents afford the final polymers as a powder and provide an acceleration of the rate of polymerization. The role of ETC is to accelerate the single electron transfer (SET) step, whereas THF enhances the degenerative chain transfer (DT) step. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6364–6374, 2004  相似文献   

11.
Graft copolymers of poly(vinyl chloride) with styrene and (meth)acrylates were prepared by atom transfer radical polymerization. Poly(vinyl chloride) containing small amount of pendent chloroacetate units was used as a macroinitiator. The formation of the graft copolymer was confirmed with size exclusion chromatography (SEC), 1H NMR and IR spectroscopy. The graft copolymers with increasing incorporation of butyl acrylate result in an increase of molecular weight. One glass transition temperature (Tg) was observed for all copolymers. Tg of the copolymer with butyl acrylate decreases with increasing content of butyl acrylate.  相似文献   

12.
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006  相似文献   

13.
The structural aspects of rigid suspension poly(vinyl chloride), PVC, have been investigated on the basis of two independent series of suspension PVC samples, polymerized at temperatures between 26 and 84°C. The reproducibility of the suspension polymerization process and the importance of the polymerization temperature with respect to the macro- and microstructure is demonstrated. Quantitative examination of the grain structure by small angle neutron scattering, Brunauer-Emmett-Teller absorption technique, and mercury porosimetry clarifies the gradual increase of the specific surface on lowering the polymerization temperature. A detailed WAXS study shows an increasing degree of crystallinity on lowering the polymerization temperature, which can be associated with the corresponding increase of the syndiotacticity. Furthermore, the presence of a polymerization history in the PVC powders with respect to the crystallinity is evidenced. This effect seems to be related to chain mobility restrictions during the polymerization process and is determined by the difference between the polymerization temperature and the glass-transition temperature (Tg) of rigid PVC. This so-called Tg effect is indicative of the fact that no appreciable swelling of PVC by its monomer occurs. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
The homopolymerization of vinyl chloride and its copolymerization with ethylene over dibutyl ether–modified SiO2-supported Ziegler–Natta catalysts based on titanium and vanadium chlorides have been studied. The supported metal complexes are sufficiently active in the polymerization of vinyl chloride. Their activity depends on the catalyst composition and conditions of formation of the catalyst on the surface of the support. The chain structure of the resulting polyvinyl chloride (PVC) has been studied by NMR spectroscopy. The thermal properties of the synthesized PVC have been investigated by differential scanning calorimetry. The PVC obtained possesses enhanced thermal stability owing to the specific features of its chain structure. Vinyl chloride polymerization over the supported metalorganic catalyst proceeds mainly via a free-radical mechanism. Process conditions have been found for conducting the copolymerization of vinyl chloride with ethylene over supported metal complexes resulting in the formation of true statistical copolymers, which is confirmed by IR and NMR spectroscopy.  相似文献   

15.
To study the possibility of living cationic polymerization of vinyl ethers with a urethane group, 4‐vinyloxybutyl n‐butylcarbamate ( 1 ) and 4‐vinyloxybutyl phenylcarbamate ( 2 ) were polymerized with the hydrogen chloride/zinc chloride initiating system in methylene chloride solvent at ?30 °C ([monomer]0 = 0.30 M, [HCl]0/[ZnCl2]0 = 5.0/2.0 mM). The polymerization of 1 was very slow and gave only low‐molecular‐weight polymers with a number‐average molecular weight (Mn) of about 2000 even at 100% monomer conversion. The structural analysis of the products showed occurrence of chain‐transfer reactions because of the urethane group of monomer 1 . In contrast, the polymerization of vinyl ether 2 proceeded much faster than 1 and led to high‐molecular‐weight polymers with narrow molecular weight distributions (MWDs ≤ ~1.2) in quantitative yield. The Mn's of the product polymers increased in direct proportion to monomer conversion and continued to increase linearly after sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixture, whereas the MWDs of the polymers remained narrow. These results indicated the formation of living polymer from vinyl ether 2 . The difference of living nature between monomers 1 and 2 was attributable to the difference of the electron‐withdrawing power of the carbamate substituents, namely, n‐butyl for 1 versus phenyl for 2 , of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2960–2972, 2004  相似文献   

16.
It was found that diacyl peroxides can be formed in situ in a polymerization medium by the reaction of an acid anhydride with hydrogen peroxide. For the specific application to aqueous vinyl chloride polymerization, an initiator system based on the base-catalyzed reaction of isobutyric anhydride with hydrogen peroxide to produce diisobutyryl peroxide gave very good results. In contrast, the acid chloride was completely ineffective as a peroxide precursor in this reaction. Studies pointing to diisobutyryl peroxide as the initiating species; investigations of reactant stoichiometry; and comparison of the in situ system with preformed diisobutyryl peroxide were conducted. It was shown that this system makes possible the polymerization of vinyl chloride at 30°C at rates comparable to those obtained with dialkyl peroxydicarbonates at 50°C, thus demonstrating the ability of this system to initiate vinyl chloride polymerization at low temperature. The rates of vinyl chloride polymerization with the use of different concentrations of in situ diisobutyryl peroxide at 30, 40, and 50°C were determined. Similarly, polymerization rates with the use of combinations of in situ diisobutyryl peroxide and n-propyl peroxydicarbonate were determined. The data obtained demonstrate rapid initiation of the polymerization reaction and a reduction in polymerization time made possible by this dual initiator system. These results were verified in pilot-plant and commercial-scale PVC polymerizations.  相似文献   

17.
A series of well‐defined amphiphilic graft copolymers containing hydrophilic poly(acrylic acid) (PAA) backbone and hydrophobic poly(vinyl acetate) (PVAc) side chains were synthesized via sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization followed by selective hydrolysis of poly(tert‐butyl acrylate) backbone. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromopropanoyloxy)methyl) acrylate, was first prepared, which can be polymerized via RAFT in a controlled way to obtain a well‐defined homopolymer with narrow molecular weight distribution (Mw/Mn = 1.08). This homopolymer was transformed into xanthate‐functionalized macromolecular chain transfer agent by reacting with o‐ethyl xanthic acid potassium salt. Grafting‐from strategy was employed to synthesize PtBA‐g‐PVAc well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.40) via RAFT of vinyl acetate using macromolecular chain transfer agent. The final PAA‐g‐PVAc amphiphilic graft copolymers were obtained by selective acidic hydrolysis of PtBA backbone in acidic environment without affecting the side chains. The critical micelle concentrations in aqueous media were determined by fluorescence probe technique. The micelle morphologies were found to be spheres. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6032–6043, 2009  相似文献   

18.
Trace amounts of labile chlorines present in poly(vinyl chloride) (PVC) were found to act as initiation sites for the preparation of graft copolymers of PVC by copper‐mediated atom transfer radical polymerization (ATRP). High grafting yields were attained during the graft copolymerizations of n‐butyl acrylate (161.8%) and 2‐ethyl hexyl acrylate (51.2%) in 7.5 h. In both cases, the grafting proceeded with first‐order kinetics with respect to the monomer concentrations, this being typical for ATRP. Gel permeation chromatography traces of the resulting products did not exhibit additional peaks attributable to the formation of free homopolymers. The presented procedure offers an efficient means of preparing self‐plasticized PVC structures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3457–3462, 2003  相似文献   

19.
Stable vinyl acetate macroradicals were produced by polymerization in a nonviscous poor solvent, a viscous good solvent and a viscous poor solvent. These macroradicals were then allowed to react with a second vinyl monomer to produce block copolymers. The formation of block copolymers was monitored for rate and yield data. The block copolymers produced were poly(vinyl acetate-b-methyl methacrylate), poly(vinyl acetate-b-acrylic acid), poly(vinyl acetate-b-vinylpyrrolidone), poly(vinyl acetate-b-acrylonitrile), poly(vinyl acetate-b-styrene), and poly(vinyl acetate-b-methyl acrylate). The block copolymers were characterized by yield, precipitation in selected solvents, pyrolysis gas chromatography, and differential scanning calorimetry.  相似文献   

20.
ABSTRACT

The synthesis of block copolymers containing low molar mass polypropylene and poly(meth)acrylates is reported. Vinyl-terminated polypropylene (Mn SEC=3,100; Mw/Mn=1.45) was used to prepare a macroinitiator for atom transfer radical polymerization (ATRP) via hydrosilation with 1-(2-bromoisobutyryloxy)propyl-tetramethyldisiloxane. Polar segments were then incorporated to polypropylene by chain extension using either methyl methacrylate, or n-butyl acrylate. While blocking efficiency was limited in this system, well-defined PP-b-PMMA (Mn=22,220; Mw/Mn=1.14) was obtained by extraction of unreacted polypropylene with diethyl ether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号