首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two metallosynthons, namely (Et4N)2[Ni(NpPepS)] (1) and (Et4N)2[Ni(PhPepS)] (2) containing carboxamido-N and thiolato-S as donors have been used to model the bimetallic M(p)-Ni(d) subsite of the A-cluster of the enzyme acetyl coenzyme A synthase/CO dehydrogenase. A series of sulfur-bridged Ni/Cu dinuclear and trinuclear complexes (3-10) have been synthesized to explore their redox properties and affinity of the metal centers toward CO. The structures of (Et4N)2[Ni(PhPepS)] (2), (Et4N)[Cu(neo)Ni(NpPepS)] x 0.5 Et2O x 0.5 H2O (3 x 0.5 Et2O x 0.5 H2O), (Et4N)[Cu(neo)Ni(PhPepS)] x H2O (4 x H2O), (Et4N)2[Ni{Ni(NpPepS)}2] x DMF (5 x DMF), (Et4N)2[Ni(DMF)2{Ni(NpPepS)}2] x 3 DMF (6 x 3 DMF), (Et4N)2[Ni(DMF)2{Ni(PhPepS)}2] (8), and [Ni(dppe)Ni(PhPepS)] x CH2Cl2 (10 x CH2Cl2) have been determined by crystallography. The Ni(d) mimics 1 and 2 resist reduction and exhibit no affinity toward CO. In contrast, the sulfur-bridged Ni center (designated Ni(C)) in the trinuclear models 5-8 are amenable to reduction and binds CO in the Ni(I) state. Also, the sulfur-bridged Ni(C) center can be removed from the trimers (5-8) by treatment with 1,10-phenanthroline much like the "labile Ni" from the enzyme. The dinuclear Ni-Ni models 9 and 10 resemble the Ni(p)-Ni(d) subsite of the A-cluster more closely, and only the modeled Ni(p) site of the dimers can be reduced. The Ni(I)-Ni(II) species display EPR spectra typical of a Ni(I) center in distorted trigonal bipyramidal and distorted tetrahedral geometries for 9(red) and 10(red), respectively. Both species bind CO, and the CO-adducts 9(red)-CO and 10(red)-CO display strong nu(co) at 2044 and 1997 cm(-1), respectively. The reduction of 10 is reversible. The CO-affinity of 10 in the reduced state and the nu(co) value of 10(red)-CO closely resemble the CO-bound reduced A-cluster (nu(co) = 1996 cm(-1)).  相似文献   

2.
Trinuclear Ni-Cu-Ni and Ni-Ni-Ni complexes derived from an Ni(ii)-dicarboxamido-dithiolato metallosynthon exhibit redox behavior and CO binding properties similar to those of the A-cluster in acetyl coenzyme A synthase/CO dehydrogenase (ACS/CODH).  相似文献   

3.
The acetyl-CoA decarbonylase/synthase (ACDS) complex catalyzes the cleavage of acetyl-CoA in methanogens that metabolize acetate to CO(2) and CH(4), and also carries out acetyl-CoA synthesis during growth on one-carbon substrates. The ACDS complex contains five subunits, among which beta possesses an Ni-Fe-S active-site metal cluster, the A-cluster, at which reaction with acetyl-CoA takes place, generating an acetyl-enzyme species poised for C-C bond cleavage. We have used Ni and Fe K fluorescence XANES and EXAFS analyses to characterize these metals in the ACDS beta subunit, expressed as a C-terminally shortened form. Fe XANES and EXAFS confirmed the presence of an [Fe(4)S(4)] cluster, with typical Fe-S and Fe-Fe distances of 2.3 and 2.7 A respectively. An Fe:Ni ratio of approximately 2:1 was found by Kalphabeta fluorescence analysis, indicating 2 Ni per [Fe(4)S(4)]. Ni XANES simulations were consistent with two distinct Ni sites in cluster A, and the observed spectrum could be modeled as the sum of separate square planar and tetrahedral Ni sites. Treatment of the beta subunit with Ti(3+) citrate resulted in shifts to lower energy, implying significant reduction of the [Fe(4)S(4)] center, along with conversion of a smaller fraction of Ni(II) to Ni(I). Reaction with CO in the presence of Ti(3+) citrate generated a unique Ni XANES spectrum, while effects on the Fe-edge were not very different from the reaction with Ti(3+) alone. Ni EXAFS revealed an average Ni coordination of 2.5 S at 2.19 A and 1.5 N/O at 1.89 A. A distinct feature at approximately 2.95 A most likely results from Ni-Ni interaction. The methanogen beta subunit A-cluster is proposed to consist of an [Fe(4)S(4)] cluster bridged to an Ni-Ni center with one Ni in square planar geometry coordinated by 2 S + 2 N and the other approximately tetrahedral with 3 S + 1 N/O ligands. The electronic consequences of two distinct Ni geometries are discussed.  相似文献   

4.
Reaction of excess NO with the S = 3/2 Fe(III) complex (Et4N)2[Fe(PhPepS)(Cl)] (1) in protic solvents such as MeOH affords the {Fe-NO}(7) nitrosyl (Et(4)N)(2)[Fe(PhPepS)(NO)] (2). This distorted square-pyramidal S = 1/2 complex, a product of reductive nitrosylation, is the first example of an {Fe-NO}7 nitrosyl with carboxamido-N and thiolato-S coordination. When the same reaction is performed in aprotic solvents such as MeCN and DMF, the product is a dimeric diamagnetic {Fe-NO}6 complex, (Et4N)2-[{Fe(PhPepS)(NO)}2] (3). Both electrochemical and chemical oxidation of 2 leads to the formation of 3 via a transient five-coordinate {Fe-NO}6 intermediate. The oxidation is NO-centered. The ligand frame is not attacked by excess NO in these reactions.  相似文献   

5.
Acetyl coenzyme A synthase/carbon monoxide dehydrogenase (ACS/CODH) is a bifunctional enzyme present in a number of anaerobic bacteria. The enzyme catalyzes two separate reactions namely, the reduction of atmospheric CO2 to CO (CODH activity at the C-cluster) and the synthesis of acetyl coenzyme A (ACS activity at the A-cluster) from CO, CH3 from a corrinoid iron-sulfur protein, and the thiol coenzyme A. The structure(s) of the A-cluster of ACS/CODH from Moorella thermoacetica revealed an unprecedented structure with three different metallic subunits linked to each other through bridging Cys-S residues comprising the active site. In these structure(s) a Fe4S4 cubane is bridged via Cys-S to a bimetallic metal cluster. This bimetallic cluster contains a four-coordinate Ni, Cu, or Zn as the proximal metal (to the Fe4S4 cluster; designated Mp), which in turn is bridged through two Cys-S residues to a terminal square planar Ni(II) (Nid, distal to Fe4S4) ligated by two deprotonated carboxamido nitrogens from the peptide backbone. It is now established that Ni is required at the Mp site for the ACS activity. Over the past several years modeling efforts by several groups have provided clues towards understanding the intrinsic properties of the unique site in ACS. To date most studies have focused on dinuclear compounds that model the Mp-Nid subsite. Synthesis of such models have revealed that the Nip sites (a) are readily removed when mixed with 1,10-phenanthroline (phen) and (b) can be reduced to the Ni(I) and/or Ni(0) oxidation state (deduced by EPR or electrochemical studies) and bind CO in terminal fashion with νco value similar to the enzyme. In contrast, the presence of Cu(I) centers at these Mp sites do not bind CO and are not removable with phen supporting a non-catalytic role for Cu(I) at the Mp site in the enzyme. The Nid site (coordinated by carboxamido-N/thiolato-S) in these models are very stable in the +2 oxidation state and not readily removed upon treatment with phen suggesting that the source of ‘labile Ni’ and the NiFeC signal arises from the presence of Ni at the Mp site in ACS. This review includes the results and implications of the modeling studies reported so far.  相似文献   

6.
Takuma M  Ohki Y  Tatsumi K 《Inorganic chemistry》2005,44(17):6034-6043
The [MoCu] carbon monoxide dehydrogenase (CODH) is a Cu-containing molybdo-flavoprotein, the active site of which contains a pterin-dithiolene cofactor bound to a sulfido-bridged dinuclear Mo-Cu complex. In this paper, the synthesis and characterization of dinuclear Mo-Cu complexes relevant to the active site of [MoCu]-CODH are described. Reaction of [MoO2S2]2- with CuCN affords the dinuclear complex [O2MoS2Cu(CN)]2- (1), in which the CN- ligand can be replaced with various aryl thiolates to give rise to a series of dinuclear complexes [O2MoS2Cu(SAr)]2- (Ar = Ph (2), o-Tol (3), and p-Tol (4)). An alternative synthesis of complex 2 is the reaction of [MoO2S2]2- with [Cu(SPh)3]2-. Similarly, [O2MoS2Cu(PPh3)]- (5), [O2MoS2Cu(dppe)]- (dppe = 1,2-bis(diphenylphosphino)ethane) (6), and [O2MoS2Cu(triphos)]- (triphos = 1,1,1-tris[(diphenylphosphino)methyl]ethane) (7) were prepared from the reactions of [MoO2S2]2- with the Cu(I) phosphine complexes. Treatment of 1, 2, 4, or 5 with dithiols (1,2-(SH)2C6H4, 1,2-(SH)2C6H2-3,6-Cl2, and 1,2-(SH)2C2H4), in acetonitrile, leads to the replacement of a molybdenum-bound oxo ligand to yield [(dithiolate)Mo(O)S2CuL]2- (L = CN, SAr; dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, or 1,2-S2C2H4) (8-13) or [(1,2-S2C6H4)Mo(O)S2Cu(PPh3)]- (14) complexes.  相似文献   

7.
Models for the active site of the acetyl CoA synthase (ACS) were synthesized by attachment of Cu+ and Ni(0) to nickel diaminodithiolate (S2N2) and diamidodithiolate (S2N2') complexes. The Ni-Ni species form stable CO adducts, i.e., [{(CO)2Ni}{NiS2N2'}]2-, whereas the Cu-NiS2N2 and Cu-NiS2N2' models do not. These results provide supporting evidence for a biological role for reduced nickel in ACS.  相似文献   

8.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

9.
The 5-subunit-containing acetyl-CoA decarbonylase/synthase (ACDS) complex plays an important role in methanogenic Archaea that convert acetate to methane, by catalyzing the central reaction of acetate C-C bond cleavage in which acetyl-CoA serves as the acetyl donor substrate reacting at the ACDS beta subunit active site. The properties of Ni in the active site A-cluster in the ACDS beta subunit from Methanosarcina thermophila were investigated. A recombinant, C-terminally truncated form of the beta subunit was employed, which mimics the native subunit previously isolated from the ACDS complex, and contains an A-cluster composed of an [Fe(4)S(4)] center bridged to a binuclear Ni-Ni site. The electronic structures of these two Ni were studied using L-edge absorption and X-ray magnetic circular dichroism (XMCD) spectroscopy. The L-edge absorption data provided evidence for two distinct Ni species in the as-isolated enzyme, one with low-spin Ni(II) and the other with high-spin Ni(II). XMCD spectroscopy confirmed that the species producing the high-spin signal was paramagnetic. Upon treatment with Ti(3+) citrate, an additional Ni species emerged, which was assigned to Ni(I). By contrast, CO treatment of the reduced enzyme converted nearly all of the Ni in the sample to low-spin Ni(II). The results implicate reaction of a high-spin tetrahedral Ni site with CO to form an enzyme-CO adduct transformed to a low-spin Ni(II) state. These findings are discussed in relation to the mechanism of C-C bond activation, in connection with the model of the beta subunit A-cluster developed from companion Ni and Fe K edge, XANES, and EXAFS studies.  相似文献   

10.
The reactions of [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] (1) with RX (R = Me, Et, n-Pr; X = I) in MeCN form the monoalkylated antimony complexes [Et(4)N](2)[RSb{Fe(CO)(4)}(3)] (R = Me, 2; R = Et, 4; R = n-Pr, 6) and the dialkylated antimony clusters [Et(4)N][R(2)Sb{Fe(CO)(4)}(2)] (R = Me, 3; R = Et, 5; R = n-Pr, 7), respectively. When [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] reacts with i-PrI, only the monoalkylated antimony complex [Et(4)N](2)[i-PrSb{Fe(CO)(4)}(3)] (8) is obtained. The mixed dialkylantimony complex [Et(4)N][MeEtSb{Fe(CO)(4)}(2)] (9) also can be synthesized from the reaction of 2 with EtI. While the reaction with Br(CH(2))(2)Br produces [Et(4)N](2)[BrSb{Fe(CO)(4)}(3)] (10), treatment with Cl(CH(2))(3)Br forms the monoalkylated product [Et(4)N](2)[Cl(CH(2))(3)Sb{Fe(CO)(4)}(3)] (11) and a dialkylated novel antimony-iron complex [Et(4)N][{&mgr;-(CH(2))(3)}Sb{Fe(CO)(4)}(3)] (12). On the other hand, the reaction with Br(CH(2))(4)Br forms the monoalkylated antimony product and the dialkylated antimony complex [Et(4)N][{&mgr;-(CH(2))(4)}Sb{Fe(CO)(4)}(2)] (13). Complexes 2-13 are characterized by spectroscopic methods or/and X-ray analyses. On the basis of these analyses, the core of the monoalkyl clusters consists of a central antimony atom tetrahedrally bonded to one alkyl group and three Fe(CO)(4) fragments and the dialkyl products are structurally similar to the monoalkyl clusters, with the central antimony bonded to two alkyl groups and two Fe(CO)(4) moieties in each case. The dialkyl complex 3 crystallizes in the monoclinic space group P2(1)/c with a = 13.014(8) ?, b = 11.527(8) ?, c = 17.085(5) ?, beta = 105.04(3) degrees, V = 2475(2) ?(3), and Z = 4. Crystals of 12 are orthorhombic, of space group Pbca, with a = 14.791(4) ?, b = 15.555(4) ?, c = 27.118(8) ?, V = 6239(3) ?(3), and Z = 8. The anion of cluster 12 exhibits a central antimony atom bonded to three Fe(CO)(4) fragments with a -(CH(2))(3)- group bridging between the Sb atom and one Fe(CO)(4) fragment. This paper discusses the details of the reactions of [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] with a series of alkyl halides and dihalides. These reactions basically proceed via a novel double-alkylation pathway, and this facile methodology can as well provide a convenient route to a series of alkylated antimony-iron carbonyl clusters.  相似文献   

11.
Acetyl-coenzyme A (CoA) synthase/carbon monoxide dehydrogenase (ACS/CODH) is a bifunctional enzyme that generates CO from carbon dioxide in the C-cluster of the beta subunit and synthesizes acetyl-CoA from carbon monoxide (CO), CoA, and CH3+ at the active site of the A-cluster in the alpha subunit. On the basis of density functional calculations, we predict that methylation of Nip occurs first, and CO then adds to the NipII-CH3 species to form the intermediate, NipII(CO)(CH3), in which Nip deligates one of its SNid bonds. The CO-insertion/CH3-migration occurs on one metal, the proximal Ni, forming the trigonal planar NipII-acetyl intermediate. The thiolate can bind to NipII and reductively eliminate the thioester. Our calculations disfavor the unprecedented bimetallic CO-insertion/CH3-migration. Ni in the proximal site produces a better catalyst than does Cu.  相似文献   

12.
Sun J  Tessier C  Holm RH 《Inorganic chemistry》2007,46(7):2691-2699
Substitution reactions at the nickel site of the cubane-type cluster [(Ph3P)NiFe3S4(LS3)]2- (2) have been investigated in the course of a synthetic approach to the C-clusters of CODH. Reaction of 2 with RS- or toluene-3,4-dithiolate affords [(RS)NiFe3S4(LS3)]3- (R = Et (5), H (6)) or [(tdt)NiFe3S4(LS3)]3- (7), demonstrating that anionic sulfur ligands can be bound at the NiII site. Clusters 5 and 6 contain tetrahedral Ni(micro3-S)3(SR) sites. Cluster 7 is of particular interest because it includes a cubanoid NiFe3(micro2-S)(micro3-S)3 core and an approximately planar Ni(tdt)(micro3-S)2 unit. The cubanoid structure is found in all C-clusters, and an NiS4-type unit has been reported in C. hydrogenoformans CODH. Clusters 5/6 are formulated to contain the core [NiFe3S4]1+ identical with Ni2+ (S = 1) + [Fe3S4]1- (S = 5/2) and 7 the core [NiFe3S4]2+ identical with Ni2+ (S = 0) + [Fe3S4]0 (S = 2) on the basis of structure, 57Fe isomer shifts, and 1H NMR isotropic shifts. Also reported are [(EtS)CuFe3S4(LS3)]3- (9) and [Fe4S4(LS3)(tdt)]3- (11). The structures of 5-7, 9, and 11 are presented. Cluster 11, with a five-coordinate Fe(tdt)(micro3-S)3 site, provides a clear structural contrast with 7, which is currently the closest approach to a C-cluster but lacks the exo iron atom found in the NiFe4S4,5 cores of the native clusters. (CODH = carbon monoxide dehydrogenase, LS3 = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-), tdt = toluene-3,4-dithiolate).  相似文献   

13.
Acetyl coenzyme A synthase (ACS) is an alpha2beta2 tetramer in which the active-site A-cluster, located in the alpha subunits, consists of an Fe4S4 cubane bridged to a {Nip Nid} binuclear site. The alpha subunits exist in two conformations. In the open conformation, Nip is surface-exposed, while the proximal metal is buried in the closed conformation. Nip is labile and can be replaced by Cu. In this study, the effects of Zn are reported. ACS in which Zn replaced Nip was inactive and did not exhibit the so-called NiFeC EPR signal nor the ability to accept a methyl group from the corrinoid-iron-sulfur protein (CoFeSP). Once Zn-bound, it could not be replaced by subsequently adding Ni. The Zn-bound A-cluster cannot be reduced and bound with CO or become methylated, probably because Zn (like Cu) is insufficiently nucleophilic for these functions. Unexpectedly, Zn replaced Nip only while ACS was engaged in catalysis. Under these conditions, replacement occurred with kapp approximately 0.6 min-1. Replacement was blocked by including EDTA in the assay mix. Zn appears to replace Nip when ACS is in an intermediate state (or states) of catalysis but this(these) state(s) must not be present when ACS is reduced in CO alone, or in the presence of CoA, CoFeSP, or reduced methyl viologen. Nip appears susceptible to Zn-attack when the alpha subunit is in the open conformation and protected from attack when it is in the closed conformation. This is the first evidence that the structurally-characterized conformations of the alpha subunit change during catalysis, indicating a mechanistic role for this conformational change.  相似文献   

14.
Treatment of [Et4N][(Me2Tp)W(CO)3] (Me2Tp = HB(3,5-dimethylpyrazol-1-yl)3) with S8 in DMF at room temperature afforded a tris(sulfido) complex [Et4N][(Me2Tp)WS3] (1a), while that of [Et4N][TpW(CO)3] (Tp = HB(pyrazol-1-yl)3) in MeCN resulted in the formation of [Et4N][TpWS3] (1b) along with [Et4N]2[[WO(S2)2]2(mu-S)] (6) as a byproduct. Under similar conditions, [Et4N][(Me2Tp)Mo(CO)3] gave a mixture of a sulfido-tetrasulfido complex [Et4N][(Me2Tp)MoS(S4)] (2a) and its monooxo analogue [Et4N][(Me2Tp)MoO(S4)], although a sulfido-tetrasulfido complex [Et4N][TpMoS(S4)] (2b) was exclusively obtained from [Et4N][TpMo(CO)3]. The reaction of 1a with [PtCl2(cod)] (cod = 1,5-cyclooctadiene) in MeCN at room temperature led to the formation of a sulfido-bridged mixed-metal complex [Et4N][(Me2Tp)WS(mu-S)2PtCl2] (10). The structures of new complexes have been determined in detail by the X-ray analyses for 1a.MeCN, 1b, 2a, 2b, 6, and 10.  相似文献   

15.
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is a bifunctional enzyme which enables archaea and bacteria to grow autotrophically on CO and hydrogen/carbon dioxide using the Wood-Ljundahl pathway. CO produced from reduction of carbon dioxide by CODH is transferred to the active site of ACS through an intramolecular tunnel, where it combines with Coenzyme A and a methyl cation to produce acetyl-CoA. The active site of ACS contains a single [4Fe-4S] cluster bridged by a cysteine sulfur atom to a binuclear center. The binuclear center is composed of two Ni atoms bridged by two separate cysteine sulfurs. The Ni site attached to the [4Fe-4S] is referred to as proximal Ni, while the other Ni atom, which assumes a square-planar geometry, is referred to as the distal site. We report the characterization of the carbonylated form of highly active (0.67 spins/mol) heterologously expressed monomeric ACS from C. hydrogenoformans in E. coli by rapid-freeze quench EPR (RFQ-EPR) and stopped-flow infrared (SF-IR) spectroscopies. The reaction of ACS with CO produces a single metal-carbonyl species whose formation rate, measured by SF-IR, correlates with the rate of formation, measured by RFQ-EPR, of the paramagnetic state of the enzyme (NiFeC species). These results indicate that the NiFeC species is the predominant form observed in solution when ACS reacts with CO. The NiFeC species contains the proximal Ni in the +1 redox state and the [4Fe-4S] cluster in the 2+ state, thus there is no evidence for either a Ni(0) or a Ni(II) state in the active carbonylated form of the enzyme.  相似文献   

16.
1 INTRODUCTIONSincethiolateligandwasintroducedintomolybdenumcarbonylcompoundin1 984 [1],theinvestigationonlow valenceMo -SRcompoundshasreceivedattentionforthiskindoflow valencecompoundspossesscertainadvantageoncompoundsyn thesis,moleculestructureandphysicala…  相似文献   

17.
Reaction of Et4NCl, NaSCH2COOMe and W(CO)6 in MeCN affords a new dinuclear tungsten(0) complex [Et4N]2[W2(CO)8(SCH2COOMe)2] (1). The crystal and molecular structure has been determined by X-ray single crystal diffraction. 1 Crystallized in the triclinic, space group P with a=11.141(7), b=10.267(4), c=10.798(3)(); α=93.96(3), β=96.88(4), γ=114.97(5)°; V=1003()3, Z=1, Dc=1.76 g/cm3, μ=60.1 cm-1, R=0.042 and Rw=0.050 for 2967 independent reflections with I>3.0 σ(I). 1 contains a WS2W planar core with nonbonding W...W distance of 3.9611(5)(), and its IR, 13C NMR, and cyclic voltammetry were measured and discussed.  相似文献   

18.
The dianionic NiN2S2 complex, Ni(ema)2-, ema=N,N'-ethylenebis-2-mercaptoacetamide, known as a reasonable model of the tripeptide complex Ni(CGC)2- (C=cysteine; G=glycine) with respect to the two carboxyamido nitrogens and cis-dithiolates in a (N2S2)4- ligand scaffold as found in acetyl CoA synthase, has been explored for S-based reactivity toward oxygenation and alkylation. The isolation and structural characterization of a sulfinato species, [Et4N]2[Ni(ema).O2], prepared through a unique direct reaction of molecular O2 with crystalline [Et4N]2[Ni(ema)] is described. Reaction of [Et4N]2[Ni(ema)] with Br(CH2)3Br yields a neutral N2S2 macrocyclic complex shown by DFT computations and electrostatic-potential mapping to be opposite in electron distribution from the neutral NiN2S2 complexes in which the anionic charge is localized on sulfur.  相似文献   

19.
The active site A-cluster in the alpha subunit of the title enzyme consists of an Fe4S4 cluster coordinated to a [Nip Nid] subcomponent. The cluster must be activated for catalysis using low-potential reductants such as Ti(III) citrate. Relative to the inactive {[Fe4S4]2+ Nip2+ Nid2+} state, the activated state appears to be 2-electrons more reduced, but the location of these electrons within the A-cluster is uncertain, with {[Fe4S4]2+ Nip0 Nid2+} and {[Fe4S4]1+ Nip1+ Nid2+} configurations proposed. Recombinant apo-alpha subunits oligomerize after activation with NiCl2. The dimer fraction, upon reduction with excess Ti(III)citrate, exhibited M?ssbauer spectra consisting of two quadrupole doublets representing 51% and 21% of the Fe, with parameters indicating [Fe4S4]1+ states. Spectra recorded in strong magnetic fields were typical of diamagnetic systems, indicating an exchange-coupled S = 0 {[Fe4S4]1+ Nip1+} state. Additional treatment with CO altered the doublet M?ssbauer parameters, suggesting an interaction with CO, but maintaining the cluster in the {[Fe4S4]1+ Nip1+} state. Reduction with substoichiometric equivalents of Ti(III) citrate afforded an EPR signal typical of Ni1+ ions, with g parallel = 2.10 and g perpendicular = 2.02. Addition of more Ti caused the signal intensity to decline, suggesting that it arises from the semireduced {[Fe4S4]2+ Nip1+} state.  相似文献   

20.
The manganacarborane dianion in [N(PPh(3))(2)][NEt(4)][1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(9)] (1b) reacts with cationic transition metal-ligand fragments to give products in which the electrophilic metal groups (M') are exo-polyhedrally attached to the {closo-1,2-MnCB(9)} cage system via three-center two-electron B-H --> M' linkages and generally also by Mn-M' bonds. With {Cu(PPh(3))}(+), the Cu-Mn-Cu trimetallic species [1,6-{Cu(PPh(3))}-1,7-{Cu(PPh(3))}-6,7-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (3a) is formed, whereas reactions with {M'(dppe)}(2+) (M' = Ni, Pd; dppe = Ph(2)PCH(2)CH(2)PPh(2)) give [1,3-{Ni(dppe)}-3-(mu-H)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(8)] (5a) and [1,3,6-{Pd(dppe)}-3,6-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (5b), both of which contain M'-Mn bonds. The latter reaction with M' = Pt affords [3,6-{Pt(dppe)}-3,6-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (6), which lacks a Pt-Mn connectivity. Compound 6 itself spontaneously converts to [1-Ph-2,2,2-(CO)(3)-8,8-(dppe)-hypercloso-8,2,1-PtMnCB(9)H(9)] (7b) and thence to [3,6,7-{Mn(CO)(3)}-3,7-(mu-H)(2)-1-Ph-6,6-(dppe)-closo-6,1-PtCB(8)H(6)] (8). This sequence occurs via initial insertion of the {Pt(dppe)} unit and then extrusion of {Mn(CO)(3)} and one {BH} vertex. In the presence of alcohols ROH, compound 6 is transformed to the 7-OR substituted analogues of 7b. X-ray diffraction studies were essential in elucidating the structures encountered in compounds 5-8 and hence in understanding their behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号