首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.  相似文献   

2.
With the non-Abelian hyper-Kähler quotient by U(M) and SU(M) gauge groups, we give the massive hyper-Kähler sigma models that are not toric in the N=1 superfield formalism. The U(M) quotient gives N!/[M!(N-M)!] (N is the number of flavors) discrete vacua that may allow various types of domain walls, whereas the SU(M) quotient gives no discrete vacua. We derive a BPS domain-wall solution in the case of N = 2 and M = 1 in the U(M) quotient model.  相似文献   

3.
4.
Within the Grassmannian U(2N)/U(N) × U(N) nonlinear σ-model representation of localization, one can study the low-energy dynamics of both a free and interacting electron gas. We study the crossover between these two fundamentally different physical problems. We show how the topological arguments for the exact quantization of the Hall conductance are extended to include the Coulomb interaction problem. We discuss dynamical scaling and make contact with the theory of variable range hopping.  相似文献   

5.
The penetration of a magnetic flux into a type-II high-T c superconductor occupying the half-space x > 0 is considered. At the superconductor surface, the magnetic field amplitude increases in accordance with the law b(0, t) = b 0(1 + t)m (in dimensionless coordinates), where m > 0. The velocity of penetration of vortices is determined in the regime of thermally activated magnetic flux flow: v = v 0exp?ub;?(U 0/T )(1-b?b/?x)?ub;, where U 0 is the effective pinning energy and T is the thermal energy of excited vortex filaments (or their bundles). magnetic flux “Giant” creep (for which U 0/T? 1) is considered. The model Navier-Stokes equation is derived with nonlinear “viscosity” vU 0/T and convection velocity v f ∝ (1 ? U 0/T). It is shown that motion of vortices is of the diffusion type for j → 0 (j is the current density). For finite current densities 0 < j < j c, magnetic flux convection takes place, leading to an increase in the amplitude and depth of penetration of the magnetic field into the superconductor. It is shown that the solution to the model equation is finite at each instant (i.e., the magnetic flux penetrates to a finite depth). The penetration depth x eff A (t) ∝ (1 + t)(1 + m/2)/2 of the magnetic field in the superconductor and the velocity of the wavefront, which increases linearly in exponent m, exponentially in temperature T, and decreases upon an increase in the effective pinning barrier, are determined. A distinguishing feature of the solutions is their self-similarity; i.e., dissipative magnetic structures emerging in the case of giant creep are invariant to transformations b(x, t) = βm b(t/β, x(1 + m/2)/2), where β > 0.  相似文献   

6.
In the multiquantum approximation of the orthogonal scheme, specific calculations for the energies and radii of the 4 8 Be nucleus are performed with allowance for all states characterized by the λ=[44] Young diagram, the quantum numbers Kmin and Kmin+2 of the O(3(A?1)) group, and the quantum numbers E=K+2N (N≤9) of the U(3(A?1)) group. The convergence of the results with respect to the extension of the basis is studied, and the structure of relevant wave functions is revealed. The results of these calculations are compared with the results obtained in the analogous approximation of the unitary scheme.  相似文献   

7.
A method for calculating electric quadrupole moments of light nuclei and probabilities of electric quadrupole transitions in them in the multiquantum approximation of the orthogonal scheme is proposed. Specific calculations of these quantities are performed for the 4 8 Be nucleus with allowance for all U(3(A ? 1)) states characterized by the λ = [44] Young diagram, the quantum numbers K min and K min + 2 of the O(3A ? 1)) group, and the number E = K + 2N (N = 0, 1, …, 9) of oscillator quanta. It is shown that an extension of the basis from the E = K min to the E = K min + 2 approximation leads to an increase of 15 to 45% in the electric quadrupole moments and to an increase in the transition probabilities B(E2) by a factor of 1.6 to 2.8. The inclusion of E = K + 2N (N = 0, 1, …), states involving multiquantum excitations (ρ excitations) increases additionally the results by 10 to 30%. The results of these calculations are compared with their counterparts obtained in the multiquantum approximation of the unitary scheme.  相似文献   

8.
The E(5) symmetry describes nuclei related to the U(5)-SO(6) phase transition, while the X(5) symmetry is related to the U(5)-SU(3) phase transition. First, a chain of potentials interpolating between the U(5) symmetry of the five-dimensional harmonic oscillator and the E(5) symmetry is considered. Parameter-independent predictions for the spectra and B(E2) values of nuclei with R4 = E(4)/E(2) ratios of 2.093, 2.135, and 2.157 (compared to the ratio of 2.000 of the U(5) case and the ratio of 2.199 of the E(5) case) are derived numerically and compared to existing experimental data, suggesting several new experiments. TheX(5) symmetry describes nuclei characterized byR4=2.904.Using the same separation of variables of the original Bohr Hamiltonian as in X(5), an exactly soluble model with R4=2.646 is constructed and its parameter-independent predictions are compared to existing spectra and B(E2) values. In addition, a chain of potentials interpolating between this new model and the X(5) symmetry is considered. Parameter-independent predictions for the spectra and B(E2) values of nuclei with R4 ratios of 2.769, 2.824, and 2.852 are derived numerically and compared to existing experimental data, suggesting several new experiments.  相似文献   

9.
We analyze systematically the effective order parameters in nuclear shape phase transition both in experiments and in the interacting boson model. We find that energy ratios and B(E2) ratios can distinguish the first- from the second-order phase transition in theory above a certain boson number N (about 50), but in experiments, only those quantities, such as E(L 1 +)/E(02 +) and B(E2; (L+2)1L 1)/B(E2; 21 → 01), etc., of which the monotonous transitional behavior in the second-order phase transition is broken in the first-order phase transition independent of N, are qualified as the effective order parameters. By implementing the originally proposed effective order parameters and the new ones, we find that the isotones with neutron number N n = 62 are a trajectory of the secondorder phase transition. In addition, we predict that the transitional behavior of isomer shifts of Xe, Ba isotopes and N n = 62 isotones is approximately monotonous due to the finiteness of nuclear system.  相似文献   

10.
The duality-symmetric nonlinear electrodynamics in a new formulation with auxiliary tensor fields is considered. The Maxwell field strength appears only in bilinear terms of the corresponding generic Lagrangian, while the self-interaction is represented by a function E depending on the auxiliary fields. Two types of dualities inherent in the nonlinear electrodynamics admit a simple off-shell characterization as symmetry properties of this function. In the standard formulation, the continuous U(1) duality symmetry is nonlinearly realized on the Maxwell field strength. In the new setting, the same symmetry acts as linear U(1) transformations of the auxiliary field variables. The nonlinear U(1) duality condition proves to be equivalent to the U(1) invariance of the self-interaction E. The discrete self-duality (or self-duality by Legendre transformation) amounts to a weaker reflection symmetry of E. For a class of duality-symmetric Lagrangians, an alternative representation with the auxiliary scalar field is introduced and new explicit examples of such systems are found.  相似文献   

11.
In this article, after a short introduction, grand unified SU(5)×SU(5) model augmented by D2 parity has been discussed. The latter turns out to be important for phenomenology. Specific pattern of the GUT symmetry breaking causes new strong dynamics at low energies. Consequently, the Standard Model leptons, along with right-handed /sterile neutrinos, come out as composite states. Issues of the gauge coupling unification, generation of the charged fermion and neutrino masses will be presented. Also, various phenomenological implications and constraints will be discussed.  相似文献   

12.
The first 2+ states in N=20 isotones are studied within the self-consistent quasiparticle random phase approximation based on the Green’s function method. The residual interaction between quasiparticles with full velocity dependence is consistently derived from the Skyrme interaction plus pairing interaction energy density functional. The B(E2, 0 1 + → 2 1 + ) transition probabilities and the excitation energies of the first 2+ states are well described within a single framework. We discuss mainly the microscopic origin of the anomalously large B(E2) value and the very low excitation energy in 32Mg.  相似文献   

13.
The renormalizations of the fermionic spectrum are considered within the framework of the t-J* model taking into account three-center interactions (H(3)) and magnetic fluctuations. Self-consistent spin dynamics equations for strongly correlated fermions with three-center interactions were obtained to calculate quasi-spin correlators. A numerical self-consistent solution to a system of ten equations was obtained to show that, in the nearest-neighbor approximation, simultaneously including H(3) and magnetic fluctuations at n>n1 (n1 ≈ 0.72 for 2t/U = 0.25) caused qualitative changes in the structure of the energy spectrum. A new Van Hove singularity is then induced in the density of states, and an additional maximum appears in the Tc(n) concentration dependence of the temperature of the transition to the superconducting phase with order parameter symmetry of the d x 2?y2 type.  相似文献   

14.
The Eliashberg theory generalized for electron—phonon systems with a nonconstant density of electron states and with allowance made for the frequency behavior of the electron mass and chemical potential renormalizations is used to study T c in the SH3 phase of hydrogen sulfide under pressure. The phonon contribution to the anomalous electron Green’s function is considered. The pairing within the total width of the electron band and not only in a narrow layer near the Fermi surface is taken into account. The frequency and temperature dependences of the complex mass renormalization ReZ(ω), the density of states N(ε) renormalized by the electron—phonon interactions, and the electron—phonon spectral function obtained computationally are used to calculate the anomalous electron Green’s function. A generalized Eliashberg equation with a variable density of electron states has been solved. The frequency dependence of the real and imaginary parts of the order parameter in the SH3 phase has been obtained. The value of T c ≈ 177 K in the SH3 phase of hydrogen sulfide at pressure P = 225 GPa has been determined by solving the system of Eliashberg equations.  相似文献   

15.
A finite system of fermions with pairing interaction is treated by the Green function method. It is shown that a finite number of “bound pairs” must be assumed to get the correct properties of the system in that region of the interaction strength where the BCS-solution is incorrect. Also the difference betweenE 0(N+2)?E 0(N) andE 0(N)?E 0(N?2),E 0(N) being the ground state energy of theN-particle system, has to be considered. The formulae derived give an interpolation between the region where perturbation theory applies and the region of validity of the BCS-equations.  相似文献   

16.
The Higgs-strahlung production process ppZ′ → ZH is an important process for studying the HZZ′ interaction. We take the B ? L model and the nonuniversal S U(2)1 × S U(2)2 × U(1) Y model as two examples and investigate their correction effects on ZH production at the LHC. Our numerical results show that, considering constraints on these two new physics models, the contributions of the B ? L model to the ZH production cross section are very small, while the S U(1)1 × S U(2)2 × U(1) Y model can generate significant contributions.  相似文献   

17.
We consider the Husimi Q(q, p)-functions which are quantum quasiprobability distributions on the phase space. It is known that, under a scaling transform (q; p) (?q; ?p), the Husimi function of any physical state is converted into a function which is also the Husimi function of some physical state. More precisely, it has been proved that, if Q(q, p) is the Husimi function, the function ?2 Q(?q; ?p) is also the Husimi function. We call a state with the Husimi function ?2 Q(?q; ?p) the stretched state and investigate the properties of the stretched Fock states. These states can be obtained as a result of applying the scaling transform to the Fock states of the harmonic oscillator. The harmonic-oscillator Fock states are pure states, but the stretched Fock states are mixed states. We find the density matrices of stretched Fock states in an explicit form. Their structure can be described with the help of negative binomial distributions. We present the graphs of distributions of negative binomial coefficients for different stretched Fock states and show the von Neumann entropy of the simplest stretched Fock state.  相似文献   

18.
We propose an entanglement measure for pure M ? N bipartite quantum states. We obtain the measure by generalizing the equivalent measure for a 2 ? 2 system, via a 2 ? 3 system, to the general bipartite case. The measure emphasizes the role Bell states have, both for forming the measure and for experimentally measuring the entanglement. The form of the measure is similar to the generalized concurrence. In the case of 2 ? 3 systems, we prove that our measure, which is directly measurable, equals the concurrence. It is also shown that, in order to measure the entanglement, it is sufficient to measure the projections of the state onto a maximum of M(M ? 1)N(N ? 1)/2 Bell states.  相似文献   

19.
The IR absorption spectra of liquid OCS (T = 135(1) K) and of the following solutions—OCS + Ar (T = 90 K), OCS + N2 (T = 90 K), OCS + Kr (T = 130 K), and OCS + Xe (T = 163 K)—are measured in the range 800–7000 cm?1. From 16 to 40 bands corresponding to transitions to vibrational states up to the third order inclusive are interpreted for basic isotope modification and for the isotopically substituted molecules 18O12C32S, 16O13C32S, and 16O12C34S. In the spectra of the liquids, the spectral moments M(1) and M(2) of all the observed bands are determined. The harmonic frequencies ω i and the anharmonicity constants x ik are calculated for all the systems, including the liquid. The anharmonicity is found to be constant within the experimental error. A large shift Δω3 is primarily determined by the dipole-induced dipole interaction.  相似文献   

20.
The magnetic properties of strongly correlated Fermi systems are studied within the framework of the fermioncondensation model—phase transition associated with the rearrangement of the Landau quasiparticle distribution, resulting in the appearance of a plateau at T=0 exactly in the Fermi surface of the single-particle excitation spectrum. It is shown that the Curie-Weiss term ~T?1 appears in the expression for the spin susceptibility χac(T) of the system after the transition point at finite temperatures. The behavior of χac(T, H) as a function of temperature and static magnetic field H in the region where the critical fermion-condensation temperature T f is close to zero is discussed. The results are compared with the available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号