首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The banding and electronic structures of crystalline 1,1,3,3,5,5‐hexaazidocyclotriphosphazene (P3N21) have been investigated at DFT‐B3LYP/6‐31G(d) level. Relaxed crystal structure compares well with experimental data. The energy gap is 5.57 eV, indicating that P3N21 is an insulator. The frontier orbital is mainly formed by atomic orbitals of azido group, so it is the most reactive part of the molecule. The intermolecular interaction is strong along the direction that is nearly perpendicular to the phosphazene ring. The distribution of electrostatic potential is quite uneven, so P3N21 has a very high impact sensitivity. The point charge electrostatic potential is very high between the azido groups of the neighboring molecules, which indicates that the crystal lattice in this position may easily be broken and becomes the explosion center when P3N21 is impacted. The overlap populations of P–Nα bonds are much less than those of other bonds, therefore the P–Nα bonds first rupture by external stimuli, which agrees well with the experimental study of mass spectrum.  相似文献   

2.
3.
A recent Communication in this journal reported the stabilization of low‐valent iron(I) in a fully oxidized polyoxovanadate. With no ligand‐field argument to support such an assignment, a re‐evaluation of the data accompanied by detailed computational analysis reveals the redox chemistry is localized to the polyoxovanadate, and when reduced, instigates a spin transition at iron.  相似文献   

4.
One‐electron reduction of C2‐arylated 1,3‐imidazoli(ni)um salts (IPrAr)Br (Ar=Ph, 3 a ; 4‐DMP, 3 b ; 4‐DMP=4‐Me2NC6H4) and (SIPrAr)I (Ar=Ph, 4 a ; 4‐Tol, 4 b ) derived from classical NHCs (IPr=:C{N(2,6‐iPr2C6H3)}2CHCH, 1 ; SIPr=:C{N(2,6‐iPr2C6H3)}2CH2CH2, 2 ) gave radicals [(IPrAr)]. (Ar=Ph, 5 a ; 4‐DMP, 5 b ) and [(SIPrAr)]. (Ar=Ph, 6 a ; 4‐Tol, 6 b ). Each of 5 a , b and 6 a , b exhibited a doublet EPR signal, a characteristic of monoradical species. The first solid‐state characterization of NHC‐derived carbon‐centered radicals 6 a , b by single‐crystal X‐ray diffraction is reported. DFT calculations indicate that the unpaired electron is mainly located at the original carbene carbon atom and stabilized by partial delocalization over the adjacent aryl group.  相似文献   

5.
6.
7.
Coordination numbers higher than usual are often associated with superior mechanical properties. In this contribution we report on the synthesis of the high‐pressure polymorph of highly condensed phosphorus nitride imide P4N6(NH) representing a new framework topology. This is the first example of phosphorus in trigonal‐bipyramidal coordination being observed in an inorganic network structure. We were able to obtain single crystals and bulk samples of the compound employing the multi‐anvil technique. γ‐P4N6(NH) has been thoroughly characterized using X‐ray diffraction, solid‐state NMR and FTIR spectroscopy. The synthesis of γ‐P4N6(NH) gives new insights into the coordination chemistry of phosphorus at high pressures. The synthesis of further high‐pressure phases with higher coordination numbers exhibiting intriguing physical properties seems within reach.  相似文献   

8.
9.
Covalency is found to even out charge separation after photo‐oxidation of the metal center in the metal‐to‐ligand charge‐transfer state of an iron photosensitizer. The σ‐donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble‐gas configuration. These findings are enabled through element‐specific and orbital‐selective time‐resolved X‐ray absorption spectroscopy at the iron L‐edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge‐separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron–hole pair associated with the electron‐transfer process.  相似文献   

10.
Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from 13C‐enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing 13C‐labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the 13C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the 13C/12C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant.  相似文献   

11.
Investigations of the intrinsic properties of gas‐phase transition metal nitride (TMN) ions represent one approach to gain a fundamental understanding of the active sites of TMN catalysts, the activities and electronic structures of which are known to be comparable to those of noble metal catalysts. Herein, we investigate the structures and reactivities of the triatomic anions HNbN? by means of mass spectrometry and photoelectron imaging spectroscopy, in conjunction with density functional theory calculations. The HNbN? anions are capable of activating CH4 and C2H6 through oxidative addition, exhibiting similar reactivities to free Pt atoms. The similar electronic structures of HNbN? and Pt, especially the active orbitals, are responsible for this resemblance. Compared to the inert NbN?, the coordination of the H atom in HNbN? is indispensable. New insights into how to replace noble metals with TMNs may be derived from this combined experimental/computational study.  相似文献   

12.
As a promising solar‐energy material, the electronic structure and optical properties of Beta phase indium sulfide (β‐In2S3) are still not thoroughly understood. This paper devotes to solve these issues using density functional theory calculations. β‐In2S3 is found to be an indirect band gap semiconductor. The roles of its atoms at different lattice positions are not exactly identical because of the unique crystal structure. Additonally, a significant phenomenon of optical anisotropy was observed near the absorption edge. Owing to the low coordination numbers of the In3 and S2 atoms, the corresponding In3‐5s states and S2‐3p states are crucial for the composition of the band‐edge electronic structure, leading to special optical properties and excellent optoelectronic performances.  相似文献   

13.
杨宝华  汪洋  黄元河 《中国化学》2005,23(4):370-376
The structures and electronic properties for C36 encapsulated in four single-wall armchair carbon nanotubes (C36@(n,n), n=6-9) were calculated using ab initio self-consistent field crystal orbital method based on density functional theory. The calculations show that the interwall spacing between the carbon nanotube and C36 plays an important role in the stabilities of resultant structures. The optimum interwall spacing is about 0.30 nm and the tubes can be considered as inert containers for the encapsulated C36. The Fermi levels and relative position of energy bands also have something to do with the interwall spacing. The shifts of Fermi level and C36-derived electron states modulate the electron properties of these structures. The extra electrons fill the bands of C36@(8,8) with the optimum interwall spacing almost in a rigid-band manner.  相似文献   

14.
TATB晶体结构的周期性密度泛函理论研究   总被引:5,自引:1,他引:5  
对TATB晶体进行DFT-B3LYP/6-31G~(* *)周期性计算研究,求得其能带能带结 构和电子结构。探讨了结构-性能关系,从带隙约为4.1eV扒知TATB晶体的导电性处 于半导体和绝缘体之间,计算所得升华热为136.25kJ·mol~(-1), 与实验值良好 相符,从原子间距和Mülliken集居分析,发现TATB晶体中同一层分子之间存在氢 键,而不同层之间距离较大,作用较弱,TATB分子中硝基氧带较多负电荷而氨基氢 带较多正电荷,这使TATB很难成为电子受体和给体,故化学上很稳定,考察晶体中 点电荷静电势,发现其在(001)面上的投影呈均匀分布,而在(100)和(010)面上的 揣影则有明显界面,表明同层分子间电子呈高度离域,异层之间相互作用极小,这 可解释TATB晶体沿c轴鼓胀以及受热循环后长大的各向异性和不可复原性等实验事 实。  相似文献   

15.
16.
Reaction of CsF with ClF3 leads to Cs[Cl3F10]. It contains a molecular, propeller‐shaped [Cl3F10]? anion with a central μ3‐F atom and three T‐shaped ClF3 molecules coordinated to it. This anion represents the first example of a heteropolyhalide anion of higher ClF3 content than [ClF4]? and is the first Cl‐containing interhalogen species with a μ‐bridging F atom. The chemical bonds to the central μ3‐F atom are highly ionic and quite weak as the bond lengths within the coordinating XF3 units (X = Cl, and also calculated for Br, I) are almost unchanged in comparison to free XF3 molecules. Cs[Cl3F10] crystallizes in a very rarely observed A[5]B[5] structure type, where cations and anions are each pseudohexagonally close packed, and reside, each with coordination number five, in the trigonal bipyramidal voids of the other.  相似文献   

17.
The surface hydroxyl groups of γ‐alumina dehydroxylated at 500 °C were studied by a combination of one‐ and two‐dimensional homo‐ and heteronuclear 1H and 27Al NMR spectroscopy at high magnetic field. In particular, by harnessing 1H–27Al dipolar interactions, a high selectivity was achieved in unveiling the topology of the alumina surface. The terminal versus bridging character of the hydroxyl groups observed in the 1H magic‐angle spinning (MAS) NMR spectrum was demonstrated thanks to 1H–27Al RESPDOR (resonance‐echo saturation‐pulse double‐resonance). In a further step the hydroxyl groups were assigned to their aluminium neighbours thanks to a {1H}‐27Al dipolar heteronuclear multiple quantum correlation (D‐HMQC), which was used to establish a first coordination map. Then, in combination with 1H–1H double quantum (DQ) MAS, these elements helped to reveal intimate structural features of the surface hydroxyls. Finally, the nature of a peculiar reactive hydroxyl group was demonstrated following this methodology in the case of CO2 reactivity with alumina.  相似文献   

18.
Run Long  Niall J. English 《Chemphyschem》2011,12(14):2604-2608
The electronic properties of anatase‐TiO2 codoped by N and P at different concentrations have been investigated via generalized Kohn–Sham theory with the Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional for exchange‐correlation in the context of density functional theory. At high doping concentrations, we find that the high photocatalytic activity of (N, P)‐codoped anatase TiO2 vis‐à‐vis the N‐monodoped case can be rationalized by a double‐hole‐mediated coupling mechanism [Yin et al., Phys. Rev. Lett. 2011, 106, 066801] via the formation of an effective N? P bond. On the other hand, Ti3+ and Ti4+ ions’ spin double‐exchange results in more substantial gap narrowing for larger separations between N and P atoms. At low doping concentrations, double‐hole‐coupling is dominant, regardless of the N? P distance.  相似文献   

19.
20.
Ni‐CeO2 is a highly efficient, stable and non‐expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst. Strong metal–support interactions activate Ni for the dissociation of methane. The results of density‐functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) to only 0.15 eV on Ni/CeO2?x(111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the C 1s XPS region. The reforming of methane proceeds in a clean and efficient way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号