首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
A new α‐C(sp3)? H alkynylation of unactivated tertiary aliphatic amines with 1‐iodoalkynes as radical alkynylating reagents in the presence of [Au2(μ‐dppm)2]2+ in sunlight provides propargylic amines. Based on mechanistic studies, a C? C coupling of an α‐aminoalkyl radical and an alkynyl radical is proposed for the C(sp3)? C(sp) bond formation. The mild, convenient, efficient, and highly selective C(sp3)? H alkynylation reaction shows excellent regioselectivity and good functional‐group compatibility. A scale‐up to gram quantities is possible with sunlight used as a clean and sustainable energy source.  相似文献   

2.
Using nickel and photoredox catalysis, the direct functionalization of C(sp3)?H bonds of N‐aryl amines by acyl electrophiles is described. The method affords a diverse range of α‐amino ketones at room temperature and is amenable to late‐stage coupling of complex and biologically relevant groups. C(sp3)?H activation occurs by photoredox‐mediated oxidation to generate α‐amino radicals which are intercepted by nickel in catalytic C(sp3)?C coupling. The merger of these two modes of catalysis leverages nickel's unique properties in alkyl cross‐coupling while avoiding limitations commonly associated with transition‐metal‐mediated C(sp3)?H activation, including requirements for chelating directing groups and high reaction temperatures.  相似文献   

3.
Herein we describe a mild method for the dual C(sp3)?H bond functionalization of saturated nitrogen‐containing heterocycles through a sequential visible‐light photocatalyzed dehydrogenation/[2+2] cycloaddition procedure. As a complementary approach to the well‐established use of iminium ion and α‐amino radical intermediates, the elusive cyclic enamine intermediates were effectively generated by photoredox catalysis under mild conditions and efficiently captured by acetylene esters to form a wide array of bicyclic amino acid derivatives, thus enabling the simultaneous functionalization of two vicinal C(sp3)?H bonds.  相似文献   

4.
PdII‐catalyzed C(sp3)?H olefination of weakly coordinating native amides is reported. Three major drawbacks of previous C(sp3)?H olefination protocols, 1) in situ cyclization of products, 2) incompatibility with α‐H‐containing substrates, and 3) installation of exogenous directing groups, are addressed by harnessing the carbonyl coordination ability of amides to direct C(sp3)?H activation. The method enables direct C(sp3)?H functionalization of a wide range of native amide substrates, including secondary, tertiary, and cyclic amides, for the first time. The utility of this process is demonstrated by diverse transformations of the olefination products.  相似文献   

5.
This study describes a new rhodium(III)‐catalyzed [3+2] annulation of 5‐aryl‐2,3‐dihydro‐1H‐pyrroles with internal alkynes using a Cu(OAc)2 oxidant for building a spirocyclic ring system, which includes the functionalization of an aryl C(sp2)? H bond and addition/protonolysis of an alkene C?C bond. This method is applicable to a wide range of 5‐aryl‐2,3‐dihydro‐1H‐pyrroles and internal alkynes, and results in the assembly of the spiro[indene‐1,2′‐pyrrolidine] architectures in good yields with excellent regioselectivities.  相似文献   

6.
A palladium‐catalyzed carbene insertion into C(sp3)?H bonds leading to pyrrolidines was developed. The coupling reaction can be catalyzed by both Pd0 and PdII, is regioselective, and shows a broad functional group tolerance. This reaction is the first example of palladium‐catalyzed C(sp3)?C(sp3) bond assembly starting from diazocarbonyl compounds. DFT calculations revealed that this direct C(sp3)?H bond functionalization reaction involves an unprecedented concerted metalation–deprotonation step.  相似文献   

7.
A method for site‐specific intermolecular γ‐C(sp3)?H functionalization of ketones has been developed using an α‐aminoxy acid auxiliary applying photoredox catalysis. Regioselective activation of an inert C?H bond is achieved by 1,5‐hydrogen atom abstraction by an oxidatively generated iminyl radical. Tertiary and secondary C‐radicals thus formed at the γ‐position of the imine functionality undergo radical conjugate addition to various Michael acceptors to provide, after reduction and imine hydrolysis, the corresponding γ‐functionalized ketones.  相似文献   

8.
The site‐selective functionalization of unactivated C(sp3)?H bonds remains one of the greatest challenges in organic synthesis. Herein, we report on the site‐selective δ‐C(sp3)?H alkylation of amino acids and peptides with maleimides via a kinetically less favored six‐membered palladacycle in the presence of more accessible γ‐C(sp3)?H bonds. Experimental studies revealed that C?H bond cleavage occurs reversibly and preferentially at γ‐methyl over δ‐methyl C?H bonds while the subsequent alkylation proceeds exclusively at the six‐membered palladacycle that is generated by δ‐C?H activation. The selectivity can be explained by the Curtin–Hammett principle. The exceptional compatibility of this alkylation with various oligopeptides renders this procedure valuable for late‐stage peptide modifications. Notably, this process is also the first palladium(II)‐catalyzed Michael‐type alkylation reaction that proceeds through C(sp3)?H activation.  相似文献   

9.
Late‐stage BODIPY diversification of structurally complex amino acids and peptides was accomplished by racemization‐free palladium‐catalyzed C(sp3)?H activation. Transformative fluorescence modification proved viable by triazole‐assisted C(sp3)?H arylation in a chemo‐ and site‐selective fashion, providing modular access to novel BODIPY peptide sensors.  相似文献   

10.
In sharp contrast to the gold‐catalyzed reactions of alkynes/allenes with nucleophiles, gold‐catalyzed oxidative cross‐couplings and especially C? H/C? H cross‐coupling have been under represented. By taking advantage of the unique redox property and carbophilic π acidity of gold, this work realizes the first gold‐catalyzed direct C(sp3)? H alkynylation of 1,3‐dicarbonyl compounds with terminal alkynes under mild reaction conditions, with subsequent cyclization and in situ oxidative alkynylation. A variety of terminal alkynes including aryl, heteroaryl, alkenyl, alkynyl, alkyl, and cyclopropyl alkynes all successfully participate in the domino reaction. The protocol offers a simple and region‐defined approach to 3‐alkynyl polysubstituted furans.  相似文献   

11.
Despite recent advances, reactivity and site‐selectivity remain significant obstacles for the practical application of C(sp3)?H bond functionalization methods. Here, we describe a system that combines a salicylic‐aldehyde‐derived L,X‐type directing group with an electron‐deficient 2‐pyridone ligand to enable the β‐methylene C(sp3)?H arylation of aliphatic alcohols, which has not been possible previously. Notably, this protocol is compatible with heterocycles embedded in both alcohol substrates and aryl coupling partners. A site‐ and stereo‐specific annulation of dihydrocholesterol and the synthesis of a key intermediate of englitazone illustrate the practicality of this method.  相似文献   

12.
Compared to the most popular directing‐group‐assisted strategy, the “undirected” strategy for C−H bond functionalization represents a more flexible but more challenging approach. Reported herein is a gold‐catalyzed highly site‐selective C(sp2)−H alkylation of unactivated arenes with 2,2,2‐trifluoroethyl α‐aryl‐α‐diazoesters. This protocol demonstrates that high site‐selective C−H bond functionalization can be achieved without the assistance of a directing group. In this transformation, both the gold catalyst and trifluoroethyl group on the ester of the diazo compound play vital roles for achieving the chemo‐ and regioselectivity.  相似文献   

13.
We have developed a highly efficient and practical approach for palladium‐catalyzed trifluoroacetate‐promoted N‐quinolylcarboxamide‐directed glycosylation of inert β‐C(sp3)?H bonds of N‐phthaloyl α‐amino acids with glycals under mild conditions. For the first time, C(sp3)?H activation for glycosylation was achieved to build C‐alkyl glycosides. This method facilitates the synthesis of various β‐substituted C‐alkyl glycoamino acids and offers a tool for glycopeptide synthesis.  相似文献   

14.
A RhI‐catalyzed three‐component reaction of tert‐propargyl alcohol, diazoester, and alkyl halide has been developed. This reaction can be considered as a carbene‐involving sequential alkyl and alkynyl coupling, in which C(sp)? C(sp3) and C(sp3)? C(sp3) bonds are built successively on the carbenic carbon atom. The RhI‐carbene migratory insertion of an alkynyl moiety and subsequent alkylation are proposed to account for the two separate C? C bond formations. This reaction provides an efficient and tunable method for the construction of all‐carbon quaternary center.  相似文献   

15.
A variety of strained α‐alkylidene‐γ‐lactams were synthesized by palladium(0)‐catalyzed intramolecular C(sp3)?H alkenylation from easily accessible acyclic and monocyclic bromoalkene precursors. These lactams are valuable intermediates for accessing various classes of mono‐ and bicylic alkaloids containing a pyrrolidine ring, as illustrated with the synthesis of an advanced model of the marine natural product plakoridine A and of the indolizidine alkaloid δ‐coniceine.  相似文献   

16.
A Cu‐catalyzed [4+1] annulation of N‐aryl‐1,2,3,4‐tetrahydroisoquinolines (N‐aryl THIQs) with α‐diazoketones has been established under oxidative conditions, leading to the construction of a series of indolo[2,1‐a]isoquinolines with generally good yields. The reaction enables dediazotized dicarbonylation of α‐diazoketones, creating direct C(sp3)/C(sp2)?H bond bifunctionalization to access tetracyclic aza‐heterocyclic skeletons.  相似文献   

17.
The alkenylation reactions of 8‐methylquinolines with alkynes, catalyzed by [{Cp*RhCl2}2], proceeds efficiently to give 8‐allylquinolines in good yields by C(sp3)? H bond activation. These reactions are highly regio‐ and stereoselective. A catalytically competent five‐membered rhodacycle has been structurally characterized, thus revealing a key intermediate in the catalytic cycle.  相似文献   

18.
C?H functionalization of aliphatic carboxylic acids without attaching exogenous auxiliary has been so far limited at the proximal β‐position. In this work, we demonstrate a ligand enabled palladium catalyzed first regioselective distal γ‐C(sp3)?H functionalization of aliphatic carboxylic acids without incorporating an exogenous directing group. Aryl iodides containing versatile functional groups including complex organic molecules are well tolerated with good to excellent yields during the γ‐C(sp3)?H arylation reaction. Interestingly, weak coordination of carboxylate group can be further extended for sequential hetero di‐arylation. Application of the protocol has been showcased by synthesizing substituted α‐tetralone. Mechanistic investigations have been carried out to shed light on the reaction pathway.  相似文献   

19.
PdII‐catalyzed enantioselective C(sp3)?H cross‐coupling of free carboxylic acids with organoborons has been realized using either mono‐protected amino acid (MPAA) ligands or mono‐protected aminoethyl amine (MPAAM) ligands. A diverse range of aryl‐ and vinyl‐boron reagents can be used as coupling partners to provide chiral carboxylic acids. This reaction provides an alternative approach to the enantioselective synthesis of cyclopropanecarboxylic acids and cyclobutanecarboxylic acids containing α‐chiral tertiary and quaternary stereocenters. The utility of this reaction was further demonstrated by converting the carboxylic acid into cyclopropyl amine without loss of optical activity.  相似文献   

20.
A bulky carboxylic acid bearing three cyclohexylmethyl substituents at the α‐position, namely, tri(cyclohexylmethyl)acetic acid, is demonstrated to act as an efficient ligand source in Pd‐catalyzed intramolecular C(sp2)?H and C(sp3)?H arylation reactions. The reactions proceed smoothly under mild reaction conditions, even at room temperature due to the steric bulk of the carboxylate ligands, which accelerates the rate‐determining C?H bond activation step in the catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号