首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syntheses of the first B9-connected carboranylphosphines (B9-Phos) featuring two carboranyl moieties as well as access to B9-Phos ligands with bulky electron-donating substituents, previously deemed unattainable, is reported. The electrochemical properties of the B9-Phos ligands were investigated, revealing the ability of the mesityl derivatives to form stabilized phosphoniumyl radical cations. The B9-Phos ligands display an extremely electron-releasing character surpassing that of alkyl phosphines and commonly used N-heterocyclic carbenes. This is demonstrated by their very small Tolman electronic parameters (TEPs) as well as extremely low P−Se coupling constants. Cone angles and buried volumes attest to the high steric demand exerted by the (di)carboranyl phosphines. The dicarboranyl phosphine AuI complexes show superior catalytic performance in the hydroamination of alkynes compared to the monocarboranyl phosphine analogs.  相似文献   

2.
N‐heterocyclic carbene (NHC) ligands with naphthyl side chains were employed for the synthesis of unsaturated, yet isolable [(NHC)Ir(cod)]+ (cod=1,5‐cyclooctadiene) complexes. These compounds are stabilised by an interaction of the aromatic wingtip that leads to a sideways tilt of the NHC?Ir bond. Detailed studies show how the tilting of such N‐heterocyclic carbenes affects the electronic shielding properties of the carbene carbon atom and how this is reflected by significant upfield shifts in the 13C NMR signals. When employed in the intramolecular hydroamination, these [(NHC)Ir(cod)]+ species show very high catalytic activity under mild reaction conditions. An enantiopure version of the catalyst system produces pyrrolidines with excellent enantioselectivities.  相似文献   

3.
A two step procedure for the synthesis of a novel family of homogeneous and immobilized Ru-complexes containing Schiff bases as O,N-bidentate ligands is described. The new Ru-complexes have been structurally characterized by IR, Raman,1H-,13C-NMR spectroscopy. The Schiff bases were associated with a diversity of inorganic and organic ligands such as chloride, phosphane, arenes, various carbenes (alkylidene, vinylidene, indenylidene and allenylidene as well as N-heterocyclic carbenes) and cyclodienes. By choosing a selective range of substituents for the Schiff base, useful physical and chemical properties of the prepared Rucomplexes can be induced. This synthetic approach is promising in creating a valuable and diverse selection of Ru-complexes, valuable for future applications.  相似文献   

4.
This study details attempts to access N-heterocyclic carbenes (NHCs) featuring the diazaborolyl group, {(HCNDipp)2B}, as one or both of the N-bound substituents, to generate strongly electron-donating and sterically imposing new carbene ligands. Attempts to isolate N-heterocyclic carbenes based around imidazolylidene or related heterocycles, are characterized by facile N-to-C migration of the boryl substituent. In the cases of imidazolium precursors bearing one N-bound diazaborolyl group and one methyl substituent, deprotonation leads to the generation of the target carbenes, which can be characterized in situ by NMR measurements, and trapped by reactions with metal fragments and elemental selenium. The half-lives of the free carbenes at room temperature range from 4–50 h (depending on the pattern of ancillary substituents) with N-to-C2 migration of the boryl function being shown to be the predominant rearrangement pathway. Kinetic studies show this to be a first-order process that occurs with an entropy of activation close to zero. DFT calculations imply that an intramolecular 1,2-shift is mechanistically feasible, with calculated activation energies of the order of 90–100 kJ mol−1, reflecting the retention of significant aromatic character in the imidazole ring in the transition state. Trapping of the carbene allows for evaluation of steric and electronic properties through systems of the type LAuCl, LRh(CO)2Cl, and LSe. A highly unsymmetrical (but nonetheless bulky) steric profile and moderately enhanced σ-donor capabilities (compared with IMes) are revealed.  相似文献   

5.
N-Heterocyclic carbenes (NHCs) possessing one or two 3,4-dimethylphosphaferrocenyl substituents and either methylene or ethylene alkyl bridges have been prepared. These carbenes turned out to be remarkably stable and were characterized by NMR methods and partly by mass spectrometry. Their molybdenum and ruthenium complexes were examined in order to determine the electronic properties and the coordination behaviour of these chiral PC- and PCP-chelate ligands, which combine a NHC unit as a strong sigma-donor with pi-accepting phosphaferrocene moieties. Crystal structures of one ligand precursor and of three complexes have been determined.  相似文献   

6.
N-heterocyclic carbene (NHC) ligands are a versatile and useful class of ligands that have enjoyed much success over the past few decades in organometallic chemistry. This fact is exemplified most convincingly in Grubbs 2nd generation olefin metathesis catalysts. We explore the electronic impact of the NHC-ligand by decoupling electronic and steric effects through simplified model N-heterocyclic carbenes. Saturated and unsaturated N-heterocyclic carbene ligands give rise to fundamentally different frontier orbitals in these catalysts, suggesting a need to classify them as two electronically distinct ligand classes.  相似文献   

7.
Parahydrogen (p‐H2) induced polarization (PHIP) NMR spectroscopy showed that [CpXRu] complexes with greatly different electronic properties invariably engage propargyl alcohol derivatives into gem‐hydrogenation with formation of pianostool ruthenium carbenes; in so doing, less electron rich CpX rings lower the barriers, stabilize the resulting complexes and hence provide opportunities for harnessing genuine carbene reactivity. The chemical character of the resulting ruthenium complexes was studied by DFT‐assisted analysis of the chemical shift tensors determined by solid‐state 13C NMR spectroscopy. The combined experimental and computational data draw the portrait of a family of ruthenium carbenes that amalgamate purely electrophilic behavior with characteristics more befitting metathesis‐active Grubbs‐type catalysts.  相似文献   

8.
The [3 + 2] cycloaddition of azides and acetylenes followed by nitrogen quaternization was applied for the generation of novel and highly modular triazolium salts. The selective substitution of the 1,3,4-substitution pattern presets such salts as precursors for a new class of abnormal carbene ligands, thus expanding the family of these high-impact ligands. Metalation of the triazolium salts is highly versatile and is illustrated by direct C-H bond activation as well as by applying a transmetalation protocol, thus providing access to Pd(II), Ru(II), Rh(I), and Ir(I) abnormal carbene complexes. The donor properties of these carbenes were analyzed by using Tolman electronic parameters and were found to be slightly stronger than those the most basic normal carbenes.  相似文献   

9.
The synthesis and study of a library of cyclic (aryl)(amido)carbenes (CArAmCs), which represent a class of electrophilic NHCs that feature low calculated singlet‐triplet gaps (ΔEST=19.9 kcal mol?1; B3LYP/def2‐TZVP) and exhibit reactivity profiles expected from triplet carbenes, are described. The electrophilic properties of the CArAmCs were quantified by analyzing their respective selenium adducts, which exhibited the largest downfield 77Se NMR chemical shifts (up to 1645 ppm) measured for any NHC derivative known to date, as well as their Ir carbonyl complexes, from which large Tolman electronic parameter (TEP) values (up to 2064 cm?1) were ascertained. The CArAmCs were found to engage in reactions that are typically observed with triplet carbenes, including C?H insertions, [2+1] cycloadditions with alkenes as well as alkynes, and spontaneous oxidation upon exposure to oxygen.  相似文献   

10.
Square-planar dinuclear nickel(II) complexes containing [S,N,O]2– ligands formed by condensation of acetyl acetone or benzoyl acetone with cysteamine were prepared. These dimeric nickel(II) compounds undergo bridge-cleavage reactions with the cage phosphine PTA (PTA = 1,3,5-triaza-7-phosphaadamantane) or in situ generated N-heterocyclic carbenes. The resulting diamagnetic, square planar NiII complexes were characterized by spectroscopic methods and X-ray diffraction.  相似文献   

11.
Fischer and Schrock carbenes display highly deshielded carbon chemical shifts (>250 ppm), in particular Fischer carbenes (>300 ppm). Orbital analysis of the principal components of the chemical shift tensors determined by solid‐state NMR spectroscopy and calculated by a 2‐component DFT method shows specific patterns that act as fingerprints for each type of complex. The calculations highlight the role of the paramagnetic term in the shielding tensor especially in the two most deshielded components (σ11 and σ22). The paramagnetic term of σ11 is dominated by coupling σ(M=C) with π*(M=C) through the angular momentum operator perpendicular to the σ and π M=C bonds. The highly deshielded carbon of Fischer carbenes results from the particularly low‐lying π*(M=C) associated with the CO ligand. A contribution of the coupling of π(M=C) with σ*(M=C) is found for Schrock and Ru‐based carbenes, indicating similarities between them, despite their different electronic configurations (d0 vs. d6).  相似文献   

12.
By means of a combined experimental and theoretical approach, the electronic features and chemical behavior of metalla‐N‐heterocyclic carbenes (MNHCs, N‐heterocyclic carbenes containing a metal atom within the heterocyclic skeleton) have been established and compared with those of classical NHCs. MNHCs are strongly basic (proton affinity and pKa values around 290 kcal mol?1 and 36, respectively) with a narrow singlet–triplet gap (around 23 kcal mol?1). MNHCs can be generated from the corresponding metalla‐imidazolium salts and trapped by addition of transition‐metal complexes affording the corresponding heterodimetallic dicarbene derivatives, which can serve as carbene transfer agents.  相似文献   

13.
We report the study of the net donating ability of monodentate and bidentate P ligands stemming from secondary phosphine oxides (SPOs). We experimentally measured and/or calculated the frequencies of CO stretching modes of various metal carbonyl complexes. The inferred electronic properties of the ligands span an unprecedented range, going from π-accepting phosphite-like compounds, to extremely electron-donating ligands outclassing N-heterocyclic carbenes.  相似文献   

14.
Mesityl gold(I) carbenes lacking heteroatom stabilization or shielding ancillary ligands have been generated and spectroscopically characterized from chloro(mesityl)methylgold(I) carbenoids bearing JohnPhos‐type ligands by chloride abstraction with GaCl3. The aryl carbenes react with PPh3 and alkenes to give stable phosphonium ylides and cyclopropanes, respectively. Oxidation with pyridine N‐oxide and intermolecular C?H insertion to cyclohexane have also been observed. In the absence of nucleophiles, a bimolecular reaction, similar to that observed for other metal carbenes, leads to a symmetrical alkene.  相似文献   

15.
Mesityl gold(I) carbenes lacking heteroatom stabilization or shielding ancillary ligands have been generated and spectroscopically characterized from chloro(mesityl)methylgold(I) carbenoids bearing JohnPhos‐type ligands by chloride abstraction with GaCl3. The aryl carbenes react with PPh3 and alkenes to give stable phosphonium ylides and cyclopropanes, respectively. Oxidation with pyridine N‐oxide and intermolecular C?H insertion to cyclohexane have also been observed. In the absence of nucleophiles, a bimolecular reaction, similar to that observed for other metal carbenes, leads to a symmetrical alkene.  相似文献   

16.
The synthesis of an air‐stable series of Pd0 complexes with unsymmetric bidentate N‐pyridine N‐heterocyclic carbene ligands has been described. The carbenes were generated by synthesis of the silver(I) complexes from the imidazolium salts, followed by transmetallation of the C‐N ligands to obtain the target electron‐rich zerovalent palladium compounds. The bidentate coordination behaviour of the ligands was confirmed by 1H, 13C NMR and X‐ray spectroscopy. The complexes are active precatalysts for the selective transfer semihydrogenation of alkynes to Z‐alkenes, with selectivities up to 99%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The synthesis of a novel family of cyclic push–pull carbenes, namely, azavinylidene phosphoranes, is described. The methodology is based on a formal [3+2] cycloaddition between terminal alkynes and phosphine–imines followed by an oxidation/deprotonation step. Carbenes 6 , obtained by simple deprotonation, exhibit typical transient carbene reactivity like the intramolecular C?H insertion reaction and a pronounced ambiphilic character exemplified by [2+1] cycloaddition with electron‐poor methyl acrylate. Owing to the cyclic structure, carbenes 6 also exhibit an excellent coordination ability toward transition metals. RhI complex 10 was obtained in excellent yield and was fully characterized by multinuclear NMR spectroscopy and X‐ray crystallography. The corresponding RhI–carbonyl complex was also prepared; this indicates that carbenes 6 belong to the strongest σ‐donating ligands to date. DFT calculations confirmed the high σ‐donation ability of 6 and their classification as push–pull carbenes with a relatively small singlet–triplet energy gap of 23.2–24.3 kcal mol?1.  相似文献   

18.
The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of typical N-heterocyclic carbenes NHCs, r-NHCs, a-NHCs and MICs have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. Prior to that both structures and 13C chemical shifts were calculated and in case of isolated carbenes the computed δ(13C)/ppm values compared (as a quality criterion for obtained structures) with the experimental ones. The TSNMRS values of the studied carbenes, which are in mesomeric equilibrium with zwitterionic (ylide/betaine/mesoionic) resonance contributors, are employed to qualify and quantify the present electronic structure and if the term carbene is still justified to denote the compounds studied. The results, thus obtained from spatial magnetic properties (TSNMRS), are compared with the geometry of the compounds, the corresponding WIBERG's bond index values, and the 13C chemical shifts especially of the carbene electron-deficient centre.  相似文献   

19.
20.
A series of phosphines featuring a persistent radical were synthesized in two steps by condensation of dialkyl-/diarylchlorophosphines with stable cyclic (alkyl)(amino)carbenes (cAACs) followed by one-electron reduction of the corresponding cationic intermediates. Structural, spectroscopic, and computational data indicate that the spin density in these phosphines is mainly localized on the original carbene carbon from the cAAC fragment; thus, it remains in the α-position with respect to the central phosphorus atom. The potential of these α-radical phosphines to serve as spin-labeled ligands is demonstrated through the preparation of several AuI derivatives, which were also structurally characterized by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号