首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Construction of a stabilized Galerkin upwind finite element model for steady and incompressible Navier-Stokes equations in three dimensions is the main theme of this study. In the time-independent context, the weighted residuals statement is kept biased in favor of the upstream flow direction by adding an artificial damping term of physical plausibility to the Galerkin framework. This upwind approach has significant advantage of seeking solutions free from cross-stream diffusion error. Finite element solutions have been found by mixed formulation, implemented in quadratic cubic elements which are characterized as possessing the so-called LBB (Ladyzhenskaya-Babuška-Brezzi) condition. An element-by-element BICGSTAB solution solver is intended to alleviate difficulties regarding the asymmetry and indefiniteness arising from the use of a mixed formulation for incompressible fluid flows. The developed three-dimensional finite element code is first rectified by solving a problem amenable to analytic solution. A well-known lid-driven cavity flow problem in a cubical cavity is also studied.  相似文献   

2.
We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary.  相似文献   

3.
Summary We consider mixed finite element approximations of the stationary, incompressible Navier-Stokes equations with slip boundary condition simultaneously approximating the velocity, pressure, and normal stress component. The stability of the schemes is achieved by adding suitable, consistent penalty terms corresponding to the normal stress component and to the pressure. A new method of proving the stability of the discretizations allows, us to obtain optimal error estimates for the velocity, pressure, and normal stress component in natural norms without using duality arguments and without imposing uniformity conditions on the finite element partition. The schemes can easily be implemented into existing finite element codes for the Navier-Stokes equations with standard Dirichlet boundary conditions.  相似文献   

4.
In classical fluid mechanics, potential fields have been employed to enable the integration of the equations of motion. As is well known, Bernoulli's equation is obtained as a first integral of Euler's equations in the absence of vorticity and viscosity if the velocity vector is perceived as the gradient of a scalar potential. The so-called Clebsch transformation [1] involving three scalar potentials allows for a further extension to flows with non-vanishing vorticity; the resulting equations turn out to be self-adjoint, allowing for a variational formulation. All attempts in classic literature, however, are restricted to inviscid flows and the finding of a potential representation enabling the integration of the Navier-Stokes equations remains desirable. Progress on this topic was reported by [3, 4] who constructed a first integral of the two-dimensional incompressible Navier-Stokes equations by making use of an auxiliary potential field and a representation of the fields in terms of complex coordinates. The new formulation proved to be useful in numerical applications and moreover, replacing the scalar potential by a tensor potential, the theory can be successfully generalised to encompass three-dimensional Navier-Stokes flow. Related to the first integral a finite element method was presented in [2] based on a formulation involving the velocities and the first order derivatives of the introduced potential. This way the dynamic boundary condition could be incorporated elegantly and the system of equations fitted into the first order system least-squares methodology. However, a promising alternative approach results if one considers the streamfunction and a slightly modified potential field as independent variables. This new approach involves Laplacian operators rather than mixed derivatives and allows for a convenient embodiment of the Neumann conditions on the streamfunction that is in contrast to the original stream function / potential formulation [4]. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this contribution three mixed least-squares finite element methods (LSFEMs) for the incompressible Navier-Stokes equations are investigated with respect to accuracy and efficiency. The well-known stress-velocity-pressure formulation is the basis for two further div-grad least-squares formulations in terms of stresses and velocities (SV). Advantage of the SV formulations is a system with a smaller matrix size due to a reduction of the degrees of freedom. The least-squares finite element formulations, which are investigated in this contribution, base on the incompressible stationary Navier-Stokes equations. The first formulation under consideration is the stress-velocity-pressure formulation according to [1]. Secondly, an extended stress-velocity formulation with an additional residual is derived based on the findings in [1] and [5]. The third formulation is a pressure reduced stress-velocity formulation based on a condensation scheme. Therefore, the pressure is interpolated discontinuously, and eliminated on the discrete level without the need for any matrix inverting. The modified lid-driven cavity boundary value problem, is investigated for the Reynolds number Re = 1000 for all three formulations. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Summary We consider a mixed finite element approximation of the three dimensional vector potential, which plays an important rôle in the simulation of perfect fluids and in the calculation of rotational corrections to transonic potential flows. The central point of our approach is a saddlepoint formulation of the essential boundary conditions. In particular, this avoids the wellknown Babuka paradox when approximating smooth domains by polyhedrons. Using piecewise linear/piecewise constant elements for the vector potential/the boundary terms, we obtain optimal error estimates under minimal regularity assumptions for the solution of the continuous problem.  相似文献   

7.
Summary The Lagrange-Galerkin method is a numerical technique for solving convection — dominated diffusion problems, based on combining a special discretisation of the Lagrangian material derivative along particle trajectories with a Galerkin finite element method. We present optimal error estimates for the Lagrange-Galerkin mixed finite element approximation of the Navier-Stokes equations in a velocity/pressure formulation. The method is shown to be nonlinearly stable.  相似文献   

8.
A new mixed finite element for the Stokes equations is considered. This new finite element is based on a mixed formulation of the Stokes problem in which the gradient of the velocity is introduced and the velocity is approximated by the Raviart-Thomas element [1]. Optimal error estimates are derived. The number of degrees of freedom, for this element, is the lowest possible, and the local conservation of the mass is assured. A hybrid version of the mixed method is also considered. Finally, some numerical results for the incompressible Navier-Stokes equations are presented. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
1.IntroductionManyproblemsarisinginfluidmechanicsaregiveninanunboundeddomain,suchasfluidflowaroundobstacles.Whencomputingthenumericalsolutionsoftheseproblems,oneoftenintroducesartificialboundariesandsetsupaxtificialboundaryconditionsonthem.Thentheoriginal…  相似文献   

10.
Summary Recently, Hughes et al. [11, 12] proposed new finite element schemes of Petrov-Galerkin type for solving the Stokes problem which do not require the discrete version of the Ladyshenskaya-Babuka-Brezzi-condition (LBB-condition). In this paper we derive a conforming finite element method for solving the stationary Navier-Stokes equations which combines the advantages of arbitrary finite element spaces for velocity/pressure with the favourable properties of the streamline diffusion method in the case of moderate and high Reynolds number.  相似文献   

11.
Spectral approximation of the periodic-nonperiodic Navier-Stokes equations   总被引:1,自引:0,他引:1  
Summary In order to approximate the Navier-Stokes equations with periodic boundary conditions in two directions and a no-slip boundary condition in the third direction by spectral methods, we justify by theoretical arguments an appropriate choice of discrete spaces for the velocity and the pressure. The compatibility between these two spaces is checked via an infsup condition. We analyze a spectral and a collocation pseudo-spectral method for the Stokes problem and a collocation pseudo-spectral method for the Navier-Stokes equations. We derive error bounds of spectral type, i.e. which behave likeM whereM depends on the number of degrees of freedom of the method and represents the regularity of the data.  相似文献   

12.
We propose and analyze a $C^0$-weak Galerkin (WG) finite element method for the numerical solution of the Navier-Stokes equations governing 2D stationary incompressible flows. Using a stream-function formulation, the system of Navier-Stokes equations is reduced to a single fourth-order nonlinear partial differential equation and the incompressibility constraint is automatically satisfied. The proposed method uses continuous piecewise-polynomial approximations of degree $k+2$ for the stream-function $\psi$ and discontinuous piecewise-polynomial approximations of degree $k+1$ for the trace of $\nabla\psi$ on the interelement boundaries. The existence of a discrete solution is proved by means of a topological degree argument, while the uniqueness is obtained under a data smallness condition. An optimal error estimate is obtained in $L^2$-norm, $H^1$-norm and broken $H^2$-norm. Numerical tests are presented to demonstrate the theoretical results.  相似文献   

13.
This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.  相似文献   

14.
The goal of this contribution is the numerical simulation of Newtonian fluid flow. In order to solve the governing incompressible Navier-Stokes equations, a mixed finite element based on a least-squares formulation is presented. We derive a div-grad first-order system resulting in a three-field approach with stresses, velocities, and pressure as unknowns, see e.g. Cai et al. [1], which is the basis for the associated minimization problem. Finally, a numerical example is presented to show the applicability and performance of the considered formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In the present work a mixed finite element based on a least-squares approach (LSFEM) is proposed. We consider a formulation for Newtonian fluid flow, which is described by the incompressible Navier-Stokes equations. The starting point is a div-grad three-field first-order system with stresses, velocities, and pressure as unknowns. Following the idea in CAI et al. [1], this three-field formulation can be transformed into a reduced stress-velocity (s-v) two-field formulation, which is the basis for the associated minimization problem. In order to show the applicability of the considered approach a numerical example is presented at the end of the paper. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
不可压缩流动的数值模拟是计算流体力学的重要组成部分. 基于有限元离散方法, 本文设计了不可压缩Navier-Stokes (N-S)方程支配流的若干并行数值算法. 这些并行算法可归为两大类: 一类是基于两重网格离散方法, 首先在粗网格上求解非线性的N-S方程, 然后在细网格的子区域上并行求解线性化的残差方程, 以校正粗网格的解; 另一类是基于新型完全重叠型区域分解技巧, 每台处理器用一局部加密的全局多尺度网格计算所负责子区域的局部有限元解. 这些并行算法实现简单, 通信需求少, 具有良好的并行性能, 能获得与标准有限元方法相同收敛阶的有限元解. 理论分析和数值试验验证了并行算法的高效性  相似文献   

17.
Summary A finite element procedure for circumventing the Babuka-Brezzi condition in mixed formulations with Lagrange multipliers defined on the boundary is presented. Residual terms constructed from the Euler-Lagrange equations are added to the classical Galerkin formulation in order to attain coercivity in a mesh-dependent norm. Convergence is proven for the primal variable and the multiplier in the natural mesh-independent norm of the problem, generalizing results of a previous paper.  相似文献   

18.
Andreas Hahn  Lutz Tobiska 《PAMM》2012,12(1):515-516
We present a finite element method for the flow of two immiscible incompressible fluids in two and three dimensions. Thereby the presence of surface active agents (surfactants) on the interface is allowed, which alter the surface tension. The model consists of the incompressible Navier-Stokes equations for velocity and pressure and a convection-diffusion equation on the interface for the distribution of the surfactant. A moving grid technique is applied to track the interface, on that account a Arbitrary-Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equation is used. The surface tension force is incorporated directly by making use of the Laplace-Beltrami operator technique [1]. Furthermore, we use a finite element method for the convection-diffusion equation on the moving hypersurface. In order to get a high accurate method the interface, velocity, pressure, and the surfactant concentration are approximated by isoparametric finite elements. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Summary. A nonlinear Galerkin method using mixed finite elements is presented for the two-dimensional incompressible Navier-Stokes equations. The scheme is based on two finite element spaces and for the approximation of the velocity, defined respectively on one coarse grid with grid size and one fine grid with grid size and one finite element space for the approximation of the pressure. Nonlinearity and time dependence are both treated on the coarse space. We prove that the difference between the new nonlinear Galerkin method and the standard Galerkin solution is of the order of $H^2$, both in velocity ( and pressure norm). We also discuss a penalized version of our algorithm which enjoys similar properties. Received October 5, 1993 / Revised version received November 29, 1993  相似文献   

20.
A family of higher order mixed finite element methods for plane elasticity   总被引:8,自引:0,他引:8  
Summary The Dirichler problem for the equations of plane elasticity is approximated by a mixed finite element method using a new family of composite finite elements having properties analogous to those possessed by the Raviart-Thomas mixed finite elements for a scalar, second-order elliptic equation. Estimates of optimal order and minimal regularity are derived for the errors in the displacement vector and the stress tensor inL 2(), and optimal order negative norm estimates are obtained inH s () for a range ofs depending on the index of the finite element space. An optimal order estimate inL () for the displacement error is given. Also, a quasioptimal estimate is derived in an appropriate space. All estimates are valid uniformly with respect to the compressibility and apply in the incompressible case. The formulation of the elements is presented in detail.This work was performed while Professor Arnold was a NATO Postdoctoral Fellow  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号