首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In capacity gradient elution, the gradient separation of ionic species is achieved by decreasing the ion-exchange capacity of a column during the course of the separation. Diol-type hydroxy groups on the resin surface form anionic complexes with borate as an eluting reagent. Thus, a chemically bonded anion-exchange column enriched with residual hydroxy groups allows the creation of a capacity gradient. An increase in the amount of the complex formed gradually brings about a decrease in the ion-exchange capacity of the column, and strongly bound analyte ions are eluted. We investigated the characteristics of a column suitable for this eluent system. The concentration of borate eluent required to remove the ion-exchange capacity depended inversely on the ratio of the residual hydroxy groups to functional groups. On a column in which this ratio was approximately 100, the ion-exchange capacity could easily be adjusted by using a low concentration of mannitol as a competing reagent. Use of this column led to very small baseline shifts during the borate-mannitol gradients, and to the simultaneous determination of anions with widely varying retention times.  相似文献   

2.
In the semiconductor industry, there is interest in determining borate at sub-ppb levels in ultrapure water, since borate is an early breakthrough ion from ion-exchange resin beds. Although dissolved silica is the most common species currently used to monitor the breakdown of the deionization systems, it is thought that borate probably breaks through earlier than silicate. To be of use as an early-warning indicator, borate must be determined at ppt levels. This paper discusses benchtop results with several new column products designed to deliver low-ppt detection limits for boron as borate. The system uses a prototype borate-specific concentrator column that is coupled to an ion-exclusion separator and suppressed-conductivity detection. The acidic eluent, containing mannitol, quantitatively elutes the borate from the concentrator. The analytical separation is performed using a specially designed ion-exclusion column. Data presented are from two multilevel calibration studies. Included is a discussion of detection-limit calculations and recommended formats for reporting results.  相似文献   

3.
Lamb JD  Smith RG 《Talanta》1992,39(8):923-930
The ability of macrocyclic ligands to complex alkali metal cations has been exploited to perform chromatographic separations of anions. Macrocycles adsorbed to reversed phase columns can complex eluent cations, thus generating anion exchange sites. Gradient separations of anions can be performed by changing the column capacity during the course of the separation, either by changing the eluent cation or by changing the column temperature. Gradient anion separations are performed by changing the eluent from sodium hydroxide to lithium hydroxide with the cryptand D-2.2.2, while similar anion separations are achieved with D-2.2.1 by a KOH-LiOH gradient. Since the complexation of cations by macrocycles is exothermic, increasing the column temperature decreases the anion column capacity, allowing temperature gradient separations. The experimentally measured DeltaH values for D-2.2.1 are higher than for D-2.2.2, leading to steeper gradients and thus better separations with D-2.2.1.  相似文献   

4.
The unique ability of macrocyclic ligands, such as the crown ethers and cryptands, to selectively complex alkali metal cations can be used as the basis for chromatographic separations of anions. Specifically, macrocycles which are adsorbed onto a reversed-phase column, form positively charged anion-exchange sites when they combine with eluent cations. Previously we have demonstrated gradient anion separations based on changing the column capacity during the course of the separation by altering the eluent cation, temperature, or organic modifier content using cryptand-based columns. Herein we report that excellent separations can also be achieved using 18-crown-6 based columns. In this column, anion retention increases with increasing eluent strength and organic modifier content. This observation is in keeping with the relatively moderate affinity of crown ethers for alkali metals when compared to cryptands. The separation of anions achieved by optimizing mobile phase variables shows that isocratic separations of anions on the crown-based column are almost as good as separations achieved only under gradient conditions on cryptand-based columns. Cation gradients provide additional improvements on the separations using the crown-based column.  相似文献   

5.
Ion chromatography (IC) has been a powerful tool for measuring ionic species in environmental samples such as tap, river and drain waters. Suppressor modules (membrane and disposable column types) have been used for reducing the background of a baseline. A new type of suppressor device, which has a suppressor resin and switching valve was developed. Fresh ionic resin is introduced into a groove for each analysis to perform the suppression of the working eluent. The eluent composition for obtaining higher sensitivity and better resolutions among ionic species and carbonate ion was also investigated. Although carbonate buffers are used for ion separation in general, the separation of carbonate ion from other ions was not achieved. A borate eluent resulted in good resolutions and higher sensitivity. A new column was also developed for obtaining higher column efficiency and resolution. The optimization of anion separation using a new IC system (IC-2001) that consists of a new suppressor device, an anion-exchange column (TSKgel SuperIC-Anion, 150x4.6 mm), an autosampler, a conductivity cell and a pump in a compact module is described.  相似文献   

6.
Summary The paper describes by simple experiments in a pragmatical way by easy rules of thumbs gradient optimization. Besides selection of the stationary phase and initial and final conditions the two other important variables are program time and eluent flow rate. It is demonstrated, that when the product of both, the gradient volume, is kept constant, the solutes are always eluted with the same eluent composition at column outlet. At constant gradient volume, peak broadening depends on flow rate and on the eluent properties (viscosity) at which the solutes elute, and on the time the solutes spend in the column. Because peak broadening increases with increasing gradient volume, the peak capacity in gradient elution shows an optimum at gradient volumes around 15 empty column volumes (program times 45 to 60 min at flow rates of 1 ml/min with standard columns).Gradient elution can also be used for fast evaluation of optimum eluent composition for isocratic analysis. This procedure requires a calibration of the equipment for determination of eluent composition at column outlet. The sample is chromatographed in a standard gradient run of 10 to 15 empty column volumes. The eluent composition at which the solute of interest elutes during the gradient is used for isocratic analysis, where the k' value of this solute will then be around 2.Part of Ph. D. Thesis H. Elgass, Saarbrücken, 1978, present address Hewlett-Packard, Waldbronn, FRG. In part presented at Eastern Analytical Symposium, New York, 1982.  相似文献   

7.
Some factors influencing the separation and detection of amino acids by high-performance anion-exchange chromatography with integrated pulsed amperometric detection were investigated. These factors include eluent concentration, column temperature, and detection waveform. The selectivity changes in weakly retained amino acids are slight with changing sodium hydroxide eluent concentration. When sodium acetate eluent concentration is changed, the selectivity variations between strongly retained amino acids containing two carboxyl groups and containing only one carboxyl group are obviously different. Significant but slight selectivity changes in weakly retained amino acids can be achieved through changing the column temperature. Sodium hydroxide and sodium acetate eluent concentration affect the detection of amino acids. Detection sensitivity of amino acids can be improved by increasing the concentration of sodium hydroxide and sodium acetate in a certain concentration range. The detections of amino acids at two different detection waveforms were compared. The hydroxyl amino acids can be selectively detected by choosing a modified detection waveform. The optimized gradient elution condition and column temperature for analyzing 19 amino acids were obtained. The time for the gradient elution program was 60 min. The column temperature was 35 degrees C. Under the optimized conditions, detection limits for 19 amino acids were 0.15-4.52 pmol. The calibration graphs of peak area for all the analytes were linear for about three orders of magnitude. The RSDs (n=5) of peak area were 0.6-5.6%. The determination of trace amino acid impurities in valine product is shown as an application example.  相似文献   

8.
硼酸根与甲阶酚醛树脂中酚羟基和邻位羟甲基的螯合反应   总被引:5,自引:0,他引:5  
通过溶液pH值的测定和红外光谱分析,研究硼砂与甲阶酚醛树脂水溶液的反应表明:在水溶液中硼砂能与甲阶酚醛树脂很快地发生反应;硼砂水解产生的B/(OH)4^-,以定量的方式与树脂中酚羟基和邻位羟甲基以共价配键相结合,形成具有四面体结构的螯合物,并放出H^ 离子。  相似文献   

9.
A retention model is derived for complex anions eluted from an anion-exchange column with multiple ionic eluents containing hydrogencarbonate, carbonate, and hydroxyl species and the sample solution, containing transition metals, anions and complexing ligand. The theory is based on the generalized ion-exchange equilibrium, protonation and complex-formation equilibria. The unknown parameters of chromatographic ion-exchange equilibrium constants for sample and eluent species are determined from the experimental retention data by iterative minimization, using a non-linear regression algorithm. The model was utilized to predict the retention behaviour of CdEDTA2−, CoEDTA2−, MnEDTA2− and NiEDTA2− ions. The capacity factors of complex ions were determined for wide ranges of pH values and eluent concentrations. Good agreement was obtained between the observed and predicted retentions.  相似文献   

10.
Adsorption capacity of polypeptides to the column packing in a solution containing multiple organic solvents was found to be expressed by means of an fn value, which is the sum of the ratios of the content of each organic solvent in the solution to the critical content of each organic solvent to cause abrupt change in the adsorption capacity, and to change abruptly at the point where the fn value becomes 1. Additionally, our results indicate that each polypeptide is eluted by the eluent containing a specific organic solvent content regardless of gradient elution rate in reversed-phase liquid chromatography, and that total organic solvent content in the eluent containing polypeptides is equal to the critical content. Considering the power law relationship between the retention times and the gradient elution rates, our results suggest that the elution of each polypeptide in reversed-phase liquid chromatography is mainly controlled by abrupt change in the adsorption capacity induced by change in the organic solvent content of the eluent during a gradient elution process, and that the abrupt change repeats across the critical threshold while a polypeptide moves through the column, and as a result, each polypeptide is concentrated in the eluent with the critical threshold.  相似文献   

11.
Ion-exclusion/anion-exchange chromatography(IEC/AEC) on a combination of a strongly basic anion-exchange resin in the OH——form with basic eluent has been developed.The separation mechanism is based on the ion-exclusion/penetration effect for cations and the anion-exchange effect for anions to anion-exchange resin phase.This system is useful for simultaneous separation and determination of ammonium ion(NH+4),nitrite ion(NO-2),and nitrate ion(NO-3) in water samples.The resolution of analyte ions can be manipulated by changing the concentration of base in eluent on a polystyrene-divinylbenzene based strongly basic anion-exchange resin column.In this study,several separation columns,which consisted of different particle sizes,different functional groups and different anion-exchange capacities,were compared.As the results,the separation column with the smaller anion-exchange capacity(TSKgel Super IC-Anion) showed well-resolved separation of cations and anions.In the optimization of the basic eluent,lithium hydroxide(LiOH) was used as the eluent and the optimal concentration was concluded to be 2 mmol/L,considering the resolution of analyte ions and the whole retention times.In the optimal conditions,the relative standard deviations of the peak areas and the retention times of NH+4,NO-2,and NO-3 ranged 1.28%-3.57% and 0.54%-1.55%,respectively.The limits of detection at signal-to-noise of 3 were 4.10 μmol/L for NH+4,1.87 μmol/L for NO-2 and 2.83 μmol/L for NO-3.  相似文献   

12.
A two-dimensional ion chromatography (2D-IC) approach has been developed which provides greater resolution of complex samples than is possible currently using a single column. Two columns containing different stationary phases are connected via a tee-piece, which enables an additional eluent flow and independent control of eluent concentration on each column. The resultant mixed eluent flow at the tee-piece can be varied to produce a different eluent concentration on the second column. This allows analytes strongly retained on the first column to be separated rapidly on the second column, whilst maintaining a highly efficient, well resolved separation of analytes retained weakly on the first column. A group of 18 inorganic anions has been separated to demonstrate the utility of this approach and the proposed 2D-IC method provided separation of this mixture with resolution of all analytes greater than 1.3. Careful optimisation of the eluent profiles on both columns resulted in run times of less than 28 min, including re-equilibration. Separations were performed using isocratic or gradient elution on the first column, with an isocratic separation being used on the second column. Switching of the analytes onto the second column was performed using a gradient pulse of concentrated eluent to quickly elute strongly retained analytes from the first column onto the second column. The separations were highly repeatable (RSD of 0.01–0.12% for retention times and 0.08–2.9% for peak areas) and efficient (typically 8000–260,000 plates). Detection limits were 3–80 ppb.  相似文献   

13.
In ion chromatography, samples of very different ammonium-to-sodium concentration ratios are difficult to quantify since these two cations have similar selectivities for stationary phases containing commonly used sulfonate or carboxylate cation-exchange functional groups. The IonPac CS15 cation-exchange column, with carboxylate and phosphonate functional groups as well as a crown ether group, was developed to address this limitation. Selectivity for the common inorganic cations on this column is different from that of conventional cation-exchange columns in that the separation between sodium and ammonium ions has been greatly increased, allowing for determinations of low levels of one in the presence of high levels of the other with an isocratic eluent. For larger than 4000:1 sodium-to-ammonium concentration ratios, an eluent step change or gradient elution is needed. For moderate ratios, combinations of this column with a carboxylate column, containing no crown ether group, can be used at room temperature with an isocratic eluent containing no organic solvent.  相似文献   

14.
A new ion chromatographic (IC) system has been established by using micelles of 3-(N,N-dimethylmyristylammonio)propanesulfonate (Zwittergent 3-14) loaded onto a reversed-phase packed column as the separation column with an electronic rotary switching valve packed-bed suppressor for conductometric detection of inorganic anions. An aqueous H3BO3-Na2B4O7 solution has been demonstrated to be the most desirable eluent for this IC system. The relationship between retention time and the concentration of the borate eluent was determined for a series of model anionic analytes and this relationship was found to be opposite to that exhibited in a conventional anion-exchange IC system. The rapid elution and complete separation of monovalent inorganic anions were obtained by initially using a high-concentration borate solution as the eluent for a short-period, and then switching to a lower-concentration borate eluent to complete the separation. Detection limits for nitrite, bromide, nitrate, and chlorate were 0.85, 0.88, 0.95 and 4.8 microM, respectively, when a 7.0 mM Na2B4O7 eluent was used. Moreover, the ability to directly detect these monovalent anions in samples containing high concentrations of sulfate and/or chloride ions provided a major advantage of this approach.  相似文献   

15.
i-Urobilin and 1-stercobilin were separated by high-performance liquid chromatography on a reversed-phase octadecylsilane-bonded column and detected fluorimetrically through formation of phosphor with zinc ions in the eluent. The separation and the intensity of the fluorescence response were affected by concentrations of zinc acetate and sodium borate buffer, pH and methanol content in the eluent. The optimal eluent used consisted of 0.1% zinc acetate in 75 mM boric acid buffer (pH 6.0)-methanol (25:75). The detection limit was 0.2 microgram/l for both i-urobilin and 1-stercobilin (signal-to-noise ratio 2), which makes the method 250-2500 times more sensitive than conventional methods.  相似文献   

16.
Some factors influencing the retention of strong-acid anions on ion-exclusion columns were investigated using columns with sulfonate and carboxylate functional groups. The nature of the functional group on the resin, the eluent pH and the eluent ionic strength all significantly affected the retention and separation of these analytes. Retention was observed for all strong-acid anions over the eluent pH range 2.2-5.7 and increased with both decreasing eluent pH and increasing eluent ionic strength. Some separation of strong-acid anions was possible when using a resin with carboxylate functional groups. It has also been demonstrated that strong-acid anions are poor markers of column void volume for ion-exclusion chromatography. A more accurate value was obtained using the neutral polymeric material dextran blue. When using eluents of low ionic strength, poor or fronted peak shapes were observed. A mechanism for these observations is proposed that relates the shape to ionic strength changes across the peak. A system peak was encountered under most experimental conditions. The properties of this peak are discussed and a cause for the system peak postulated.  相似文献   

17.
The spherical beads consisting of cellulose 3,5-dimethylphenylcarbamate with partial hydroxyl groups were prepared to be used as chiral packing materials (CPMs) for HPLC. The beads were obtained without using macroporous silica gel, which is usually used as the support of the CPMs based on the polysaccharide derivatives. After the crosslinking in the bead with diisocyanates, such as 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-dibenzyl diisocyanate (DBDI), tolylene-2,4-diisocyanate (TDI), and m-xylylene diisocyanate (XDI), the obtained beads were packed into an HPLC column. As the content of the hydroxyl groups of the cellulose derivatives decreased, the obtained CPM exhibited a higher chiral recognition ability. The beads possessed a higher loading capacity than the CPM prepared by coating the cellulose derivative on silica gel. The crosslinked beads could be used with the eluent containing chloroform. The amylose derivative beads were also prepared as a CPM for chiral HPLC.  相似文献   

18.
Three flow injection (FI) systems were investigated for the determination of trace iron in beer: an FI-in-valve column-flame atomic absorption spectrophotometry (FI-FAAS) system, a spectrophotometric FI system with a column placed at the detection point, and an FI-spectrophotometric system with bead injection (FI-BI). Cationic exchange resin Dowex 50W X8 and iminodiacetate chelating resin, Chelex-100, were employed for the FI-spectrophotometric and FI-FAAS systems, respectively. The FI-in-valve column, packed with the resin, enhances the FAAS performance. The spectrophotometric FI system with a column (packed with Chelex-100) placed at the detection point (in a cell holder of a spectrophotometer) is based on the formation of iron (II)–1,10-phenanthroline complex sorbed onto the resin. No eluent has been found to be suitable. The FI-BI for renewable microcolumn has been proven to be an alternative. The FI-FAAS and FI-BI procedures provide online sample preseparation and preconcentration for the determination of iron in beer. Both are simple, rapid, and economical. The procedures also involve sample preparation (decarbonation and suppression of tannin interference by adding ascorbic acid) and standard addition. The results obtained by FI-FAAS and FI-BI agree with those of AOAC spectrophotometric method.  相似文献   

19.
Abstract

The presence of nitrogenous organic compounds in raw water sources for municipal supplies is of environmental concern because many of them exert significant chlorine demand (1), while some produce complex stable mutagenic products upon chlorination (2, 3) or are precursors in haloform formation (1). To assist in assessing the importance of this problem high performance liquid chromatography (HPLC) was utilized to identify trace quantities of N-organic contaminants in concentrated samples of municipal water supplies of northeastern Massachusetts. Chromatographic resolution of complex mixtures was achieved on a reversed phase column (Zorbax C-8, DuPont Co.) using a 0.05 M phosphate buffer (pH = 6.9) or a 0.05 M borate buffer (pH = 8.9) to 50% methanol gradient. Constituents of concentrated samples were identified by the amount of time required for elution from the analytical column (retention position), and the positions of maximum and minimum U.V. absorbances, which were measured by stoppedflow spectral scanning of resolved chromatographic peaks. A fluorometric monitor utilizing fluorescamine and borate buffer revealed groups of primary amine compounds not detectable by U.V. spectroscopy.  相似文献   

20.
Summary The chromatographic efficiency and stability of a new octadecyl-bonded polymer (ODP) gel, developed for reversed phase liquid chromatography (RPLC) by substitution of stearate ester groups for the hydroxyl groups of vinyl alcohol copolymer particles, were investigated and compared with those of conventional gels. The efficiency of the column packed with the ODP gel was practically unaffected by repeated alternating passages of distilled water and acetonitrile, apparently because the gel volume was affected similarly by both solvents. Like conventional ODS columns, the ODP column demonstrated a close correlation between log k’ (capacity factor) and carbon atom number in alkyl alcohols in accordance with Martin’s rule and H ∼ 4 dp, thus indicating a high column efficiency for these alcohols. The capacity factor of the ODP column for pyridine with acidic eluent was smaller than that of ODS columns, and the pyridine peak was sharp and symmetrical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号