首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
In the title compound, 2C10H15N5O4·0.5H2O, there are two independent mol­ecules of the pyrimidinyl­isoleucine in general positions and a water mol­ecule lying on a twofold rotation axis. The bond lengths within the organic moieties demonstrate significant polarization of the electronic structure. Each of the organic mol­ecules participates in 12 intermolecular hydrogen bonds, of O—H?O and N—H?O types, while the water mol­ecule acts as a double donor and as a double acceptor of O—H?O hydrogen bonds. The organic components are linked by the hydrogen bonds into a single three‐dimensional framework, reinforced by the water mol­ecules.  相似文献   

2.
The title compound, C21H23ClN4O2·0.5H2O, contains two independent mol­ecules in the asymmetric unit. In each mol­ecule the piperazine ring adopts a chair conformation; the deviations of the piperazine N atoms from the best plane through the remaining four C atoms are ?0.678 (3) and 0.662 (3) Å in mol­ecule A, and 0.687 (3) and ?0.700 (3) Å in mol­ecule B. The mol­ecules are linked by two hydrogen bonds of the O—H?N type involving the O atom of the water mol­ecule of crystallization.  相似文献   

3.
2,2‐Di­methyl‐5‐[3‐(4‐methyl­phenyl)‐2‐propenyl­idene]‐1,3‐di­ox­ane‐4,6‐dione, C16H16O4, crystallizes in the triclinic space group , with two mol­ecules in the asymmetric unit. These mol­ecules and a centrosymmetrically related pair, linked together by weak C—H?O hydrogen bonds, form a tetramer. 5‐[3‐(4‐Chloro­phenyl)‐2‐propenyl­idene]‐2,2‐di­methyl‐1,3‐dioxane‐4,6‐dione, C15H13ClO4, also crystallizes in the triclinic space group , with one mol­ecule in the asymmetric unit. Centrosymmetrically related mol­ecules are linked together by weak C—H?O hydrogen bonds to form dimers which are further linked by yet another pair of centrosymmetrically related C—H?O hydrogen bonds to form a tube which runs parallel to the a axis.  相似文献   

4.
3β‐Hydr­oxy‐7‐drimen‐12,11‐olide hemihydrate, C15H22O3·0.5H2O, (I), has two sesquiterpene mol­ecules and one water mol­ecule in the asymmetric unit. The OH groups of both mol­ecules and both H atoms of the water mol­ecule are involved in near‐linear inter­molecular hydrogen bonds, having O⋯O distances in the range 2.632 (3)–2.791 (2) Å. 3β‐Acet­oxy‐7‐drimen‐12,11‐olide, C17H24O4, (II), has its ring system in very nearly the same conformation as the two mol­ecules of (I).  相似文献   

5.
In the title compound, C13H13N5O4·H2O (4,5′‐cyclo­wyosine·H2O), the cyclization forces a syn arrangement of the aglycon with respect to the sugar moiety. The ribo­furan­ose part of the mol­ecule displays a β‐d configuration with an envelope C1′‐endo pucker. The mol­ecules are arranged in columns along the short a axis and are linked to water mol­ecules through O—H?O and O—H?N hydrogen bonds.  相似文献   

6.
The asymmetric unit of the title compound, C25H30FN3O·0.5CH3OH, contains four symmetry‐independent steroid and two methanol mol­ecules. The conformations of the independent steroid mol­ecules are very similar. Intermolecular O—H⋯O hydrogen bonds create two independent chains, each of which links two of the independent steroid mol­ecules plus one methanol mol­ecule via a co‐operative O—H⋯O—H⋯O—H pattern. Intermolecular C—H⋯O and C—H⋯F interactions are also observed.  相似文献   

7.
The asymmetric unit of the title compound, C22H31N3O4·H2O, incorporates one water mol­ecule, which is hydrogen bonded to the 3‐oxo O atom of the indolizidinone system. The two rings of the peptidomimetic mol­ecule are trans‐fused, with the six‐membered ring having a slightly distorted half‐chair conformation and the five‐membered ring having a perfect envelope conformation. The structure is stabilized by intermolecular O—H?O interactions between the water and adjacent peptide mol­ecules, and by N—H?O interactions between the peptide mol­ecules, which link the mol­ecules into infinite chains.  相似文献   

8.
The crystal structures of three 1:2 inclusion compounds that consist of host mol­ecule 2,5‐di­phenyl­hydro­quinone (C18H14O2) and the guest mol­ecules 2‐pyridone (C5H5NO), 1,3‐di­phenyl‐2‐propen‐1‐one (chalcone, C15H12O) and 1‐(4‐meth­oxy­phenyl)‐3‐phenyl‐2‐propen‐1‐one (4′‐methoxy­chal­cone, C16H14O2) were determined in order to study the ability of guest mol­ecules in inclusion compounds to undergo photoreaction. All of the crystals were found to be photoresistant. The three inclusion compounds crystallize in triclinic space group . In each case, the host/guest ratio is 1:2, with the host mol­ecules occupying crystallographic centers of symmetry and the guest mol­ecules occupying general positions. The guest mol­ecules in each of the inclusion compounds are linked to the host mol­ecules by hydrogen bonds. In the inclusion compound where the guest mol­ecule is pyridone, the host mol­ecule is disordered so that the hydroxy groups are distributed between two different sites, with occupancies of 0.738 (3) and 0.262 (3). The pyridone mol­ecules form dimers via N—H⋯O hydrogen bonds.  相似文献   

9.
The title compound, C24H18N4O, is a bis‐bidentate Schiff base ligand exhibiting pseudo‐C2 symmetry. The mol­ecule is twisted about the central ether linkage and exhibits an imine E configuration. In the crystal, the mol­ecules are linked by weak intermolecular C—H?N hydrogen bonds.  相似文献   

10.
The title tetracyclic diterpenoid, 10,13,16,17‐tetra­hydroxy‐9‐methyl‐15‐oxo‐20‐norkaurane‐18,10‐carbolactone hemihydrate, C20H28O6·0.5H2O, is a plant metabolite from Parinari sprucei, part of the Venezuelan Amazon flora. The asymmetric unit consists of two nearly identical mol­ecules of the diterpenoid and one mol­ecule of water. Some of the geometric parameters reflect steric strain in the mol­ecule. The extended structure is characterized by hydrogen bonds and weaker hydrogen‐mediated interactions, which involve all of the hydroxy groups and propagate in sheets that coincide with the (002) family of planes. The water mol­ecule acts as a double hydrogen‐bond donor and single acceptor and thus plays a critical role in the pattern of intermolecular interactions.  相似文献   

11.
The title compound, [HgBr(C7H4NO4)(H2O)], was obtained by the reaction of an aqueous solution of mercury(II) bromide and pyridine‐2,6‐di­carboxylic acid (picolinic acid, dipicH2). The shortest bond distances to Hg are Hg—Br 2.412 (1) Å and Hg—N 2.208 (5) Å; the corresponding N—Hg—Br angle of 169.6 (1)° corresponds to a slightly distorted linear coordination. There are also four longer Hg—O interactions, three from dipicH? [2.425 (4) and 2.599 (4) Å within the asymmetric unit, and 2.837 (4) Å from a symmetry‐related mol­ecule] and one from the bonded water mol­ecule [2.634 (4) Å]. The effective coordination of Hg can thus be described as 2+4. The mol­ecules are connected to form double‐layer chains parallel to the y axis by strong O—H?O hydrogen bonds between carboxylic acid groups of neighbouring mol­ecules, and by weaker hydrogen bonds involving both H atoms of the water mol­ecule and the O atoms of the carboxylic acid groups.  相似文献   

12.
The title compound, C19H20O6, crystallizes in the centrosymmetric space group P21/c with one mol­ecule in the asymmetric unit. The mol­ecule is approximately planar and the dihedral angle between the phenyl rings is 11.0 (1)°. The H atoms of the central propenone group are trans. There is an intramolecular O—H⃛O hydrogen bond and the mol­ecules are crosslinked by four intermolecular C—H⃛O hydrogen bonds, producing a three‐dimensional network.  相似文献   

13.
The structure of the title compound, C18H20ClN3O5, displays the characteristic features of azo­benzene derivatives. Intramolecular N—H⋯O, weak intramolecular C—H⋯O, and intermolecular O—H⋯O and C—H⋯O interactions influence the conformation of the mol­ecules and the crystal packing. Intermolecular hydrogen bonds link the mol­ecules into infinite chains, and the title compound adopts the keto–amine tautomeric form. The azo­benzene moiety of the mol­ecule has a trans configuration. The mol­ecule is not planar, and the dihedral angle between the two phenyl rings is 35.6 (2)°.  相似文献   

14.
The title 1,2‐diol derivative, C10H12O2, crystallizes with two independent but closely similar mol­ecules in the asymmetric unit. Only two of the four OH groups are involved in classical hydrogen bonding; the mol­ecules thereby associate to form chains parallel to the short c axis. The other two OH groups are involved in O—H⋯(C[triple‐bond]C) systems. Additionally, three of the four C[triple‐bond]C—H groups act as donors in C—H⋯O inter­actions. The 1,4‐diol derivative crystallizes with two independent half‐mol­ecules of the diol (each associated with an inversion centre) and one water mol­ecule in the asymmetric unit, C12H16O2·H2O. Both OH groups and one water H atom act as classical hydrogen‐bond donors, leading to layers parallel to the ac plane. The second water H atom is involved in a three‐centre contact to two C[triple‐bond]C bonds. One acetyl­enic H atom makes a very short `weak' hydrogen bond to a hydr­oxy O atom, and the other is part of a three‐centre system in which the acceptors are a hydroxy O atom and a C[triple‐bond]C bond.  相似文献   

15.
The title compound, C10H12O6S, has been obtained as dark‐yellow chunk‐shaped crystals, together with the expected thin white needles. The structures of the two phases are identical. Two independent mol­ecules compose the asymmetric unit: one mol­ecule is totally planar, whereas a methyl group of the second mol­ecule points out of the plane. Each mol­ecule participates in several intra‐ and intermolecular hydrogen bonds and short contacts. The overall structure can be regarded as parallel sheets of mol­ecules. Within a sheet, mol­ecules are connected to one another in an infinite network via numerous short intermolecular contacts. Sheets are connected via hydrogen bonds and short contacts, in particular involving the methyl groups.  相似文献   

16.
The title compound, C19H14N5+·ClO4?·H2O, contains planar C19H14N5+ cations, perchlorate anions and water mol­ecules. The two closest parallel cations (plane‐to‐plane distance of 3.41 Å), together with two neighbouring perchlorate anions and two water mol­ecules, form an electrically neutral quasi‐dimeric unit. Two acidic H atoms of the cation, both H atoms of the water mol­ecule, the N atoms of the imidazole rings and three of the four O atoms of the perchlorate anion are involved in the hydrogen‐bonding network within the dimeric unit. The remaining third acidic H atom of the imidazole rings and the water mol­ecules complete a two‐dimensional network of hydrogen bonds, thus forming puckered layers of dimers. The angle between the planes of two neighbouring dimeric units in the same layer is 33.25 (3)°.  相似文献   

17.
Crystal structures are reported for three isomeric compounds, namely 2‐(2‐hydroxy­phenyl)‐2‐oxazoline, (I), 2‐(3‐hydroxy­phenyl)‐2‐oxazoline, (II), and 2‐(4‐hydroxy­phenyl)‐2‐oxazoline, (III), all C9H9NO2 [systematic names: 2‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (I), 3‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (II), and 4‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (III)]. In these compounds, the deviation from coplanarity of the oxazoline and benzene rings is dependent on the position of the hydroxy group on the benzene ring. The coplanar arrangement in (I) is stabilized by a strong intra­molecular O—H⋯N hydrogen bond. Surprisingly, the 2‐oxazoline ring in mol­ecule B of (II) adopts a 3T4 (C2TC3) conformation, while the 2‐oxazoline ring in mol­ecule A, as well as that in (I) and (III), is nearly planar, as expected. Tetra­mers of mol­ecules of (II) are formed and they are bound together via weak C—H⋯N hydrogen bonds. In (III), strong inter­molecular O—H⋯N hydrogen bonds and weak intra­molecular C—H⋯O hydrogen bonds lead to the formation of an infinite chain of mol­ecules perpendicular to the b direction. This paper also reports a theoretical investigation of hydrogen bonds, based on density functional theory (DFT) employing periodic boundary conditions.  相似文献   

18.
In the centrosymmetric title compound, [Co2(C12H10O2P)4(C5H5N)4(H2O)2], each approximately octa­hedral Co atom features two trans‐coordinated pyridine mol­ecules, one water mol­ecule, a terminally coordinated monodentate diphenyl­phosphinate ligand, and two bidentate diphenyl­phosphinate ligands that bridge the two Co atoms across a centre of inversion to form a dimeric binuclear complex. The discrete mol­ecules are linked by double hydrogen bonds between the terminally coordinated diphenyl­phosphinate ligand and the water mol­ecule to form a continuous chain along the crystallographic b axis.  相似文献   

19.
In the title compound, {[Zn(C10H8N2)(H2O)4](C6H5O4S)2·3H2O}n, the Zn atom, the bipyridine ligand and one of water mol­ecules are located on twofold rotation axes. The Zn atom is coordinated by four O atoms from four water mol­ecules and two N atoms from two 4,4′‐bipyridine mol­ecules in a distorted octa­hedral geometry. The Zn2+ ions are linked by the 4,4′‐bipyridine mol­ecules to form a one‐dimensional straight chain propagating along the c axis. The 4‐hydroxy­benzene­sulfonate counter‐ions are bridged by the solvent water mol­ecules through hydrogen bonds to generate a two‐dimensional layer featuring large pores. In the crystal packing, the intra­layer pores form one‐dimensional channels along the c axis, in which the one‐dimensional [Zn(C10H8N2)(H2O)4]2+ chains are encapsulated. Electrostatic inter­actions between cations and anions and extensive hydrogen bonds result in a three‐dimensional supra­molecular structure.  相似文献   

20.
Crystals of the title racemic compound, C11H13NO2, consist of two types of mol­ecules (conformers); one mol­ecule has an exocyclic OH group in an equatorial position and the other has this group in an axial position. Consequently, the hydrogen‐bond schemes for the two mol­ecules are different. The mol­ecules with equatorial OH groups create infinite parallel chains (formed by the same enantio­mer), connected by centrosymmetric dimers of mol­ecules (of mixed enantio­mers), both with axial OH groups. Possible inter­conversion of the conformers and the flexibility of the mol­ecule were studied by means of different MP2 and density functional theory (DFT) methods. The optimization of the structure by the DFT method confirmed the types of the hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号