首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

2.
We consider a linear integral equation, which arises when solving the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a double layer potential, with a hypersingular integral treated in the sense of Hadamard finite value. We consider the case in which the exterior or interior problem is solved in a domain whose boundary is a closed smooth surface and the integral equation is written over that surface. A numerical scheme for solving the integral equation is constructed with the use of quadrature formulas of the type of the method of discrete singularities with a regularization for the use of an irregular grid. We prove the convergence, uniform over the grid points, of the numerical solutions to the exact solution of the hypersingular equation and, in addition, the uniform convergence of the values of the approximate finite-difference derivative operator on the numerical solution to the values on the projection of the exact solution onto the subspace of grid functions with nodes at the collocation points.  相似文献   

3.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

4.
We study the solvability of a complete two-dimensional linear integral equation with a hypersingular integral understood in the sense of the Hadamard principal value. We justify the convergence of a quadrature-type numerical method for the case in which the equation in question is uniquely solvable. We present an application of the results to the numerical solution of the Neumann boundary value problem on a plane screen for the Helmholtz equation by the surface potential method.  相似文献   

5.
The paper is concerned with the model of an elastic body in the form of a half-plane whose boundary is subjected to periodic loading. It is assumed that there exists an additional surface stress, which is characteristic of nanometer-sized bodies and which obeys the laws of surface elasticity theory. With the use of the boundary properties of analytical functions and the Goursat-Kolosov complex potentials, the boundary value problem in its general setting with an arbitrary load is reduced to a hypersingular integral equation with respect to the derivative of the surface stress. For a periodic load, the solution of this equation is obtained in the form of a Fourier series. The effect of the surface stress upon the stress state of the boundary of the half-plane is examined with independent action of periodically distributed tangential and normal loads. In particular, the size effect was discovered, which is manifested in the dependence of stresses versus the period of loading within several dozens of nanometers. Normal loads are shown to be responsible for tangential stresses on the boundary, which are zero in the classical solution.  相似文献   

6.
We consider a three-dimensional boundary value problem for the Laplace equation on a thin plane screen with boundary conditions for the “directional derivative”: boundary conditions for the derivative of the unknown function in the directions of vector fields defined on the screen surface are posed on each side of the screen. We study the case in which the direction of these vector fields is close to the direction of the normal to the screen surface. This problem can be reduced to a system of two boundary integral equations with singular and hypersingular integrals treated in the sense of the Hadamard finite value. The resulting integral equations are characterized by the presence of integral-free terms that contain the surface gradient of one of the unknown functions. We prove the unique solvability of this system of integral equations and the existence of a solution of the considered boundary value problem and its uniqueness under certain assumptions.  相似文献   

7.
A 3D problem of reflection of a plane electromagnetic wave by a local impedance section of a wavy surface is considered. The boundary value problem for the system of Maxwell’s equations in a region with an irregular boundary is reduced to solution of systems of hypersingular integral equations. A numerical algorithm is proposed for solution of these systems. Results of numerical computations are presented.  相似文献   

8.
A boundary element method is introduced to approximate the solution of a scattering problem for the Helmholtz equation with a generalized Fourier–Robin‐type boundary condition given by a second‐order elliptic differential operator. The formulation involves three unknown fields, but is free from any hypersingular integral. Existence and uniqueness of the solution are established using a Babuška inf–sup condition. When implementing the method, a lumping process allows to remove two fields from the formulation. The numerical solution has thus the same cost as the one of a problem relative to a usual Neumann boundary condition. Numerical tests confirm the ability of the method for solving this type of non‐standard boundary value problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
We consider a linear integral equation with a supersingular integral treated in the sense of the Hadamard finite value, which arises in the solution of the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a doublelayer potential. We consider the case in which the exterior boundary value problem is solved outside a plane surface (a screen). For the integral operator in the above-mentioned equation, we suggest quadrature formulas of the vortex loop method with regularization, which provide its approximation on the entire surface when using an unstructured partition. In the problem in question, the derivative of the unknown density of the double-layer potential, as well as the errors of quadrature formulas, has singularities in a neighborhood of the screen edge. We construct a numerical scheme for the integral equation on the basis of the suggested quadrature formulas and prove an estimate for the norm of the inverse matrix of the resulting system of linear equations and the uniform convergence of the numerical solutions to the exact solution of the supersingular integral equation on the grid.  相似文献   

10.
We investigate a free boundary value problem of the stationary Stokes' equations. In a previous paper adapted hydrodynamical potentials have been constructed and their jump relations have been discussed. Here we study a direct method to obtain an equivalent boundary integral equations' system of the first kind. Its solution properties are investigated in the framework of strongly elliptic pseudodifferential operators. For numerical purposes a suitable representation formula for the variational equation is given in terms of integro-differential operators which avoids the evaluation of hypersingular integrals.  相似文献   

11.
A numerical scheme has been constructed for solving a linear hypersingular integral equation on a segment with the integral treated in the sense of the Hadamard principle value by the method of piecewise linear approximations on an arbitrary nonuniform grid, with the hypersingular integral being regularized by approximating the unknown function with a constant in a small neighborhood of the singular point. The radius of the neighborhood can be chosen independently of the grid pitch, the latter understood as the maximum distance between the nodes. The uniform convergence of the obtained numerical solutions to the exact solution is proved as the grid pitch and the radius of the neighborhood in which the regularization is performed simultaneously tend to zero.  相似文献   

12.
The dynamic contact problem of the motion of a flat punch on the boundary of an elastic half-plane is considered. During motion, the punch deforms the elastic half-plane, penetrating it in such a manner that its base remains parallel to the boundary of the half-plane at each instant of time. In movable coordinates connected to the moving punch, the contact problem reduces to solving a two-dimensional integral equation, whose two-dimensional kernel depends on the difference between the arguments for each of the variables. An approximate solution of the integral equation of the problem is constructed in the form of a Neumann series, whose zeroth term is represented in the form of the superposition of the solutions of two-dimensional integral equations on the coordinate semiaxis minus the solution of the integral equation on the entire axis. This approach provides a way to construct the solution of the two-dimensional integral equation of the problem in four velocity ranges of motion of the punch, which cover the entire spectrum of its velocities, as well as to perform a detailed analysis of the special features of the contact stresses and vertical displacements of the free surface on the boundary of the contract area. An approximate method for solving the integral equation, which is based on a special approximation of the integrand of the kernel of the integral equation in the complex plane, is proposed for obtaining effective solutions of the problem that do not contain singular quadratures.  相似文献   

13.
We study the solvability of a complete two-dimensional linear hypersingular integral equation that contains a hypersingular integral operator in which the integral is understood in the sense of Hadamard finite value as well as an integral operator in which the integral is understood in the sense of principal value, an integral operator with a weakly singular kernel, and an integral-free term. We consider smooth solutions in the class of functions that have Hölder continuous derivatives outside a neighborhood of the boundary. We prove the Fredholm alternative and estimate the norm of the solution in a special metric.  相似文献   

14.
The problem of scattering of two dimensional surface water waves by a partially immersed rigid plane vertical barrier in deep water is re-examined. The associated mixed boundary value problem is shown to give rise to an integral equation of the first kind. Two direct approximate methods of solution are developed and utilized to determine approximate solutions of the integral equation involved. The all important physical quantity, called the Reflection Coefficient, is evaluated numerically, by the use of the approximate solution of the integral equation. The numerical results, obtained in the present work, are found to be in an excellent agreement with the known results, obtained earlier by Ursell (1947), by the use of the closed form analytical solution of the integral equation, giving rise to rather complicated expressions involving Bessel functions.  相似文献   

15.
The boundary value problem for the Helmholtz equation for the acoustic pressure in a shallow sea can be reduced to a system of integral equations (some of which can be hypersingular). We suggest a numerical method for solving this system. In this approach to the numerical solution of the sound propagation problem in a shallow sea, the surfaces of the sea, the seabed, and the layers can have an arbitrary geometric structure.Translated from Differentsialnye Uravneniya, Vol. 40, No. 9, 2004, pp. 1256–1270.Original Russian Text Copyright © 2004 by Lifanov, Stavtsev.  相似文献   

16.
Earth surface effects on active faults: An eigenvalue asymptotic analysis   总被引:1,自引:0,他引:1  
We study in this paper an eigenvalue problem (of Steklov type), modeling slow slip events (such as silent earthquakes, or earthquake nucleation phases) occurring on geological faults. We focus here on a half space formulation with traction free boundary condition: this simulates the earth surface where displacements take place and can be picked up by GPS measurements. We construct an appropriate functional framework attached to a formulation suitable for the half space setting. We perform an asymptotic analysis of the solution with respect to the depth of the fault. Starting from an integral representation for the displacement field, we prove that the differences between the eigenvalues and eigenfunctions attached to the half space problem and those attached to the free space problem, is of the order of d-2, where d is a depth parameter: intuitively, this was expected as this is also the order of decay of the derivative of the Green's function for our problem. We actually prove faster decay in case of symmetric faults. For all faults, we rigorously obtain a very useful asymptotic formula for the surface displacement, whose dominant part involves a so called seismic moment. We also provide results pertaining to the analysis of the multiplicity of the first eigenvalue in the line segment fault case. Finally we explain how we derived our numerical method for solving for dislocations on faults in the half plane. It involves integral equations combining regular and Hadamard's hypersingular integration kernels.  相似文献   

17.
We consider an initial value problem for the second-order differential equation with a Dirichlet-to-Neumann operator coefficient. For the numerical solution we carry out semi-discretization by the Laguerre transformation with respect to the time variable. Then an infinite system of the stationary operator equations is obtained. By potential theory, the operator equations are reduced to boundary integral equations of the second kind with logarithmic or hypersingular kernels. The full discretization is realized by Nyström's method which is based on the trigonometric quadrature rules. Numerical tests confirm the ability of the method to solve these types of nonstationary problems.  相似文献   

18.
We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous space. The proposed approach consists in the use of the Schwarz alternating method with consecutive solution of the interior and exterior boundary value problems in the intersecting subdomains on whose adjoining boundaries the iterated interface conditions are imposed. The convergence of the iterative method is proved. The convergence rate of the iterative process is studied analytically in the case when the subdomains are spherical layers with the known exact representations of all consecutive approximations. In this model case, the influence of the algorithm parameters on the method efficiency is analyzed. The approach under study is implemented for solving a problem with a sophisticated configuration of boundaries while using a high precision finite elementmethod to solve the interior boundary value problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated with some numerical experiments.  相似文献   

19.
We consider numerical methods for solving inverse problems that arise in heart electrophysiology. The first inverse problem is the Cauchy problem for the Laplace equation. Its solution algorithm is based on the Tikhonov regularization method and the method of boundary integral equations. The second inverse problem is the problem of finding the discontinuity surface of the coefficient of conductivity of a medium on the basis of the potential and its normal derivative given on the exterior surface. For its numerical solution, we suggest a method based on the method of boundary integral equations and the assumption on a special representation of the unknown surface.  相似文献   

20.
A hypersingular boundary integral equation of the first kind on an open surface piece Γ is solved approximately using the Galerkin method. As boundary elements on rectangles we use continuous, piecewise bilinear functions which vanish on the boundary of Γ. We show how to compensate for the effect of the edge and corner singularities of the true solution of the integral equation by using an appropriately graded mesh and obtain the same convergence rate as for the case of a smooth solution. We also derive asymptotic error estimates in lower-order Sobolev norms via the Aubin–Nitsche trick. Numerical experiments for the Galerkin method with piecewise linear functions on triangles demonstrate the effect of graded meshes and show experimental rates of convergence which underline the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号