首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel organic‐inorganic hybrid electrolyte based on poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) triblock copolymer (Pluronic P123) complexed with LiClO4 via the co‐condensation of an epoxy trialkoxysilane and tetraethylorthosilicate was prepared. Characterization was made by a variety of techniques including powder X‐ray diffraction, AC impedance, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and multinuclear solid state NMR measurements. The hybrid with [O]/[Li] = 16 exhibited a mesophase with a certain degree of ordering, which arose by the self‐assembly of P123 with the silica network. The P123 triblock copolymer acts as a structure‐directing surfactant to organize with silica networks and as a polymer matrix to dissolve alkali lithium salts as well. The DSC results indicated the formation of transient crosslinking between Li+ ions and the ether oxygens of the EO and PO segments, resulting in an increase the Tg with increasing salt concentrations. Variable temperature 7Li‐{1H} MAS NMR spectra revealed the presence of two different local environments for lithium cations, probably due to the lithium cations in the polymer‐rich domain and in the silica‐rich domain, respectively. A combination of XRD and conductivity results suggests that the drastically enhanced conductivity for the ordered hybrid electrolyte is closely related to the formation of mesophase, which may provide unique Li+ conducting pathways.  相似文献   

2.
Structure and properties of polyacrylamide-grafted silica have been investigated with the help of thermal analysis methods, NMR spectroscopy and by measuring the ability solubilization in benzene when compared with homopolymer polyacrylamide (PAA). More homogeneous structure, low rigidity and density of packing have been revealed for the polymer shell. PAA form a dense polymer shell, which interact with silica surface through H-bonds. 1H NMR spectroscopy suggests no influence of silica particles on PAA stereoregularity. PAA-grafted silica considered as a special type of polymer-colloid complex where polymer chains are covalently bound to silica with one end and polymer segments along the chain are hydrogen bound to the particle surface.  相似文献   

3.
Silicon-29 NMR spectra have been recorded for aqueous solutions of sodium silicate in the alkaline pH range using silica enriched in the 29Si isotope. Work at low concentration shows that essentially only monomeric orthosilicate ions are present at ca. 0.01 M in silica. At higher concentrations, peaks which lack fine structure indicate species whose silicon nuclei are all equivalent. The experiments have assisted in the difficult process of assigning the spectra of silicate solutions.  相似文献   

4.
The structure and surface functionalization of biologically relevant silica-based hybrid materials was investigated by 2D solid-state NMR techniques combined with dynamic nuclear polarization (DNP). This approach was applied to a model system of mesoporous silica, which was modified through in-pore grafting of small peptides by solid-phase peptide synthesis (SPPS). To prove the covalent binding of the peptides on the surface, DNP-enhanced solid-state NMR was used for the detection of 15N NMR signals in natural abundance. DNP-enhanced heterocorrelation experiments with frequency switched Lee–Goldburg homonuclear proton decoupling (1H–13C and 1H–15N CP MAS FSLG HETCOR) were performed to verify the primary structure and configuration of the synthesized peptides. 1H FSLG spectra and 1H-29Si FSLG HETCOR correlation spectra were recorded to investigate the orientation of the amino acid residues with respect to the silica surface. The combination of these NMR techniques provides detailed insights into the structure of amino acid functionalized hybrid compounds and allows for the understanding for each synthesis step during the in-pore SPPS.  相似文献   

5.
The cationic polymerization of electron rich monomers such as vinyl ethers, vinyl furane, and cyclopentadiene on silica surfaces can be initiated by aryl methyl halides. The reactions yield always soluble polymers (by heterogeneous catalysis) and novel polymer/silica hybrid materials. The link between polymer and solid is caused by covalent Si-O-C bonds, by network formation of the polymers during the chain growth, or by a combination of both of them. The analysis of the polymer structures on the surface by 1H MAS NMR spectroscopy in suspension and by solid state 13C CP MAS NMR spectroscopy is described. Proof of Si-O-C bonds via DRIFT spectroscopy and 13C CP MAS NMR spectroscopy is given. The most effective method of irreversibly linking the polymer to the silica surface is the network formation. Polyvinyl ethers are bound strongly to the surface, as can be shown by FTIR measurements, but the linkage is not stable due to the Si-O-C bonds' susceptibility to hydrolysis. Poly-cyclopentadienes (PCPD) are linked to the surface by Si-O-C bonds, which show an extraordinary high resistance to acids and bases. Si-O-C bond formation of poly-2-vinyl furane could not yet be detected by 13C CP MAS NMR spectroscopy and DRIFT spectroscopy. In this case the high degree of coating derives from the bifunctionality of 2-vinyl furane: it may undergo Friedel-Crafts-alkylation at the 5-position of the furane ring as well as chain polymerization via the vinyl group at the 2-position.  相似文献   

6.
Solutions of poly(p-phenylene terephthalamide) in fuming sulfuric acid were characterized by 13C NMR spectroscopy and solution viscosity measurements over the 2–28% w/w concentration range. The spectra showed the presence of two distinct amide carbonyl resonances at low concentration, tentatively assigned to cis and trans conformations. As the concentration increased, additional carbonyl lines were observed along with significant broadening. Peak area measurements showed that only the polymer molecules in the isotropic environments contributed to the 13C NMR spectra and a considerable amount of the polymer remained in the isotropic phase at concentrations previously considered to consist of polymer in highly anisotropic regions. Spin-lattice relaxation times were measured at six concentrations using the inversion recovery method. The aromatic carbons relaxed at a much faster rate (ca. 0.10 s) than the carbonyls (ca. 0.45 s), but the relaxation rates for both carbons were essentially constant over the concentration range, indicating that the observed isotropic phase is not affected by changes in the macroscopic solution behavior so as to alter spin-lattice relaxation mechanisms.  相似文献   

7.
Summary: Silica gel, an important inorganic polymer with many applications, was silylated with 3-(phenylaminopropyl)trimethoxysilane (PAPTMOS) by means of a novel “low solvent” method, whereby the silane was dissolved in a small amount of methanol, mixed with silica and reaction carried out in a heated vacuum oven. Polyaniline (PANI) was grafted to the silylated silica by in situ polymerization of aniline, then dedoped with aqueous ammonia. Physically adsorbed PANI was removed from the modified silica by washing with tetrahydrofuran (THF) and N-methyl-2-pyrrolidone (NMP). The silylated, PANI-modified silica had electrical conductivity 1.2 × 10−3 S cm−1 after being re-doped with methanesulfonic acid. FTIR, elemental analysis, X-ray photoelectron spectroscopy, solid-state 13C and 29Si NMR and morphological studies by SEM confirmed successful formation of the SiO2-polyaniline hybrid material.  相似文献   

8.
The reactivity of copolymer silane composed of maleic anhydride in the modification of fine colloidal silica was studied. The reaction of colloidal silica of 10 and 45-nm diameter with trimethoxysilyl-terminated poly(maleic anhydride-co-styrene) [P(MA-ST)] and poly(MA-co-methyl methacrylate) in tetrahydrofuran resulted in effective surface modification without particle aggregation. From the results that the reaction using the polystyrene silane of low molecular weight led to partial aggregation, it was suggested that the steric interaction between relatively rigid copolymer chains having a maleic anhydride moiety adsorbed on the silica prevented the aggregation in the reaction. The 29Si cross-polarization magic-angle-spinning NMR spectra of P(MA-ST)-modified silica showed that the polymer silane was bound to the silica surface by the direct reaction with silica hydroxyl groups and via the polymerization. Received: 27 June 2001 Accepted: 6 September 2001  相似文献   

9.
Physical and gas transport properties of novel hyperbranched polyimide–silica hybrid membranes were investigated and compared with those of linear‐type polyimide–silica hybrid membranes with similar chemical structures. Hyperbranched polyamic acid, as a precursor, was prepared by polycondensation of a triamine, 1,3,5‐tris(4‐aminophenoxy)benzene (TAPOB), and a dianhydride, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA). 6FDA‐TAPOB hyperbranched polyimide–silica hybrids were prepared using the polyamic acid, water, and tetramethoxysilane (TMOS) by sol–gel reaction. 5% weight‐loss temperature of the 6FDA‐TAPOB hyperbranched polyimide–silica hybrids determined by TG‐DTA measurement considerably increased with increasing silica content, indicating effective crosslinking at polymer–silica interface. CO2, O2, N2, and CH4 permeability coefficients of the 6FDA‐based polyimide–silica hybrids increased with increasing silica content. In addition, CO2/CH4 selectivity of the 6FDA‐TAPOB–silica hybrids remarkably increased with increasing silica content. From 129Xe NMR analysis, characteristic distribution and interconnectivity of cavities created around polymer–silica interface were suggested in the 6FDA‐TAPOB–silica hybrids. It was indicated that size‐selective separation ability is effectively brought by the incorporation of silica for the 6FDA‐TAPOB hyperbranched polyimide–silica hybrid membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 291–298, 2006  相似文献   

10.
We report in our studies to assess the impact of gamma radiation on silica and on the silica-polymer interface in filled polysiloxane rubber. Electron spin resonance (ESR) and solid-state nuclear magnetic resonance (NMR) studies have been performed on samples exposed to gamma radiation. In an effort to probe directly the effect of gamma radiation on the silica surface, we employed 1H and 29Si NMR. Our ESR studies show trapped paramagnetic species (positive holes and/or trapped electrons) within the host silica matrix for all samples exposed to gamma radiation. A sample of pure cab-o-sil irradiated to a dose of 50 kGy also shows an ESR signal. Our studies on real-time aged samples (derived from field trials) also show ESR signatures indicative of silica based trapped paramagnetic species. The growth of trapped paramagnetic species as a function of gamma dose was investigated. This shows that the build up of trapped species occurs rapidly at low gamma dose before reaching saturation at about 20-30 kGy. Radiation induced band gap excitation is the likely process leading to the creation of these paramagnetic species which may be trapped in regions of local charge deficit within the silica matrix. Species that are not trapped may take part in silica surface reactions leading to changes in filler-polymer interfacial interactions. NMR studies combined with ammonia modified swell studies have shown increased polymer segmental chain mobility (softening) at low gamma dose indicative of a possible reduction in filler-polymer interfacial interactions. For those samples exposed to high gamma dose, our ammonia modified swell studies suggest increased polymer-filler interactions presumably through silica-polymer crosslinking effects. Our 1H and 29Si NMR studies on irradiated silica suggest that the silica surface is sensitive to gamma radiation. Our observations are important as they highlight the need to better control the quality (size, purity, etc.) of the silica constituent in filled polymer components used in gamma radiation environments.  相似文献   

11.
Retention gape deactivated with Silicone OV-1701-OH show good chromatographic performance and remarkable stability against water induced stationary phase degradrdation. In an attempt to better understand the findamentals off the deactivation process using silanol terminated polysiloxanes, a fumed silica was deactivated with Silicon OV-1701-OH. In contrast to fused silic capillaries, fumed silica (Aerosil A-200) can be studied by 29Si cross-polarization magic-angle-spinning (CPMAS) NMR, thus serving as a model substrate for fused silica. Retention data from inverse gas chromatography at infinite dilurion and 29Si CP MAS NMR data of five Aerosil phases, differing in residual silanol surface concentration, are correlated with the aim of validating this approach for stationary phase characterization. A comparatively detailed model of the deactivating polymer layer that explains the observed absorption activities is deduced. Surface silanols are shown to play a key role in the polymer layer, the structure of which is of primary importance for the absorption behavior after deactivation. Contrary to common belief, the absolute silanol surface concentration after deativation is only of secondary importance for the overall absorption activity. High silanol surface concentrations enhance degradation of the polysiloxane chains into small cyclic fragments as well as subsequent absorption and immobolization to the silica substrate surface. The mobility of linear polysiloxane chains in the kHz regime (as determined bby NMR cross-polarization dynamics) appears to determine the extent which the residual silanols are accessible for analytes. It is therefore anticipated that there is an optimum silanol surface concentration of fused silica surfaces to be deactivated with silanol terminated polysiloxanes; it should be lazrge enough to adsord polymer fragments, but not large to avoid excessive residual silanol activity.  相似文献   

12.
Glycidoxypropyltrimethoxysilane (GPTS) is frequently used as precursor for the preparation of sol-gel derived nanoscaled hybrid polymers. The influence of nanoscaled metal oxide sols of silica, boehmite, zirconia and ceria on reactions of GPTS in ethanolic hydrolysates and in corresponding gels (epoxide ring-opening, condensation degree) was examined by liquid- and solid-state 13C and 29Si NMR with regard to a better correlation between structure and material properties. Generally, a higher condensation degree of RSi(O0.5)3 units of GPTS is found after addition of metal oxide sols compared to GPTS without additives. The metal oxide sols (10 mole% series) cause an epoxide ring-opening up to 20% in GPTS hydrolysates after 24 h. A nearly complete ring opening was found in the boehmite and silica containing hybrid gels whereas gels containing ceria and other types of silica only show a low degree of ring-opening. The results show an accelerated ring-opening with increasing content of AlO/OH-species in silica sols. 13C NMR studies reveal that the epoxide ring-opening does not completely lead to polyether structures but to considerable amounts (up to 40%) of ethylether groups which can influence the material properties (hardness).  相似文献   

13.
Ibuprofen molecules have been encapsulated in mesoporous MCM-41 type-silica functionalised or not by amino groups. They have been characterised by 13C and 1H solid state NMR spectroscopy. The 13C MAS single pulse or cross polarization NMR spectra, as well as the 1H MAS NMR spectra demonstrate an extremely high mobility of the ibuprofen molecules when the matrix is not functionalised. On the contrary, when the silica matrix is functionalized by amino groups, the 13C NMR response shows less mobility suggesting the existence of interactions between the amino groups and the carboxylic groups. Benzoic acid as well as benzamide have also been encapsulated and their NMR responses compared to that of ibuprofen.  相似文献   

14.
15.
Prepared via Stöber-type sol–gel routes were three types of silica particles of <1 μm in size: pure silica, Ca-involving silica, and chitosan/alginate-coated silica with a polymershell-silica core structure. Calcium ions were impregnated in the organic layers of the polymer-coated silica particle. The sol–gel procedure was applied to tetraethoxysilane dissolved in an ethanol/water mixture, while Ca–silica was derived from CaCl2-containing ethanol/water solutions. Scanning and transmission electron micrograph analyses indicated that those silica particles consisted of ~10 nm primary particles, the Ca–silica particles (~500 nm) were larger than the Ca-free ones (~200 nm) and that their size increased with the Ca concentration in the precursor solutions. From 1H- and 29Si- magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra and 29Si cross-polarization NMR spectra, the mechanism of primary particle agglomeration and degradation of the secondary particles in saline were discussed in terms of the content of H2O molecules and >Si–OH as well as hydrogen bonding interactions among them. In addition, the Ca–silica and core-shell silica deposited apatite in Kokubo’s simulated body fluid. Thus, the present Ca–silica and polymer-coated silica particles were suggested to be applicable to injectable bone fillers for bone generation.  相似文献   

16.
Tin oxide-doped hybrid particles were prepared by a wet chemical process with organic-inorganic (phenyl/silica) hybrid particles in an alcoholic solution. The phenyl/silica hybrid particles, with a diameter of ca. 790 nm were used as a new support material for tin oxide (SnO2) particles from tin(IV) chloride. The surface of the particles was modified via nitration of aromatic groups in the particles, to promote formation of the tin oxide coating on the particles. The thickness and surface morphology of the tin oxide layer coated on the nitrated-phenyl/silica hybrid particles could be controlled by varying the tin(IV) chloride concentration and reaction time. The size and morphology of the resultant particles were investigated with field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The particles obtained were also characterised by infrared (FTIR) and solid-state 13C magic angle spinning nuclear magnetic resonance (13C-CP/MAS NMR) spectroscopy. The effect of processing parameters on the crystallinity and structure of the doped hybrids were confirmed by X-ray diffraction (XRD) patterns.  相似文献   

17.
Fullerene/silica hybrid materials were obtained by radiation grafting on silica surface of toluene or decalin solutions of C60. As determined by thermogravimetric analysis, the amount of C60 grafted on silica surface was dependent from the radiation dose administered and independent from the C60 concentration and the nature of the organic solvent. In absence of air, a dose of 48 kGy was sufficient to ensure a grafting level of 30% by weight of C60 in the hybrid material. The fullerene/silica hybrid material shows a remarkable thermal stability, since the early decomposition starts above 300 °C as measured by DTG and DTA. The chemical structure of the fullerene/silica hybrid material was determined by FT-IR spectroscopy and with solid state 13C CP-MAS NMR. The potential application of such materials has been outlined.  相似文献   

18.
Organic–inorganic hybrid materials have been used as fillers to reinforce dental resin composites, which require strengthening to improve their performance in large stress-bearing applications such as crowns and multiple-unit restorations. Homogeneous organic–inorganic hybrid materials with high performance were prepared by mixing 3-methacryloxypropyltrimethoxysilane (MPTS) and tetraethylorthosilicate (TEOS) synthesized by the sol–gel route. The matrix was prepared by hydrolyzing and condensing the TEOS and MPTS, using basic catalysis and excess water. The resulting xerogel was treated at 50, 100, 150, and 200 °C for 4 h, and the structure was analyzed by thermogravimetry (TG/DTA), photoluminescence (PL), nuclear magnetic resonance (NMR 29Si and 13C), transmission electron microscopy (TEM), infrared spectroscopy (IR), and Raman spectroscopy. The PL spectra displayed the Eu3+ lines characteristic of 5D07FJ (J = 0, 1, 2, 3, 4) ions, and the blue emission was ascribed to the silica matrix. TG, MNR and infrared spectroscopy analyses indicated the hybrid silica was stable, with the organic part present up to 150 °C. Increasing the temperature of the heat treatment was found to increase the degree of hydrolysis. The size and morphology of the silica particles were identified by TEM.  相似文献   

19.
Acrylic polymer-silica hybrid emulsions were synthesized from both anionic and cationic polymer emulsions by simple post-addition of tetraethoxysilane as a silica precursor. Solvent resistance of the films from the hybrid emulsions and the zeta-potential of the hybrid emulsions suggested the different forms of silica components in each hybrid emulsion. Thermal gravimetric analysis, 29Si NMR measurements, and transmission electron microscope observations revealed that the hybrid emulsion from the anionic polymer emulsion was a mixture of anionic polymer particles and homogeneously dissolved silicate oligomer-polymer. On the contrary, the hybrid emulsion from cationic polymer emulsion consisted of polymer core-silica shell particles. The electrostatic interaction between the cationic polymer particle surface and the silicate would be responsible for the accumulation of the silicate onto the particle surface, leading to the silica shell layer formation. The sol-gel condensation reaction of silicate in the acidic emulsion phase was revealed to be controllable by the surface charge of the coexisting particles.  相似文献   

20.
Poly(2-chloroethyl vinyl ether-alt-maleic anhydride) can exhibit lower critical solution temperature-type phase behavior reversibly by tuning the solvent composition in mixed solvent of tetrahydrofuran (THF) and hexane. The effect of solvent composition and polymer concentration on cloud point of polymer solution was investigated. The cloud point temperature for high molecular weight polymer was lower than that for lower molecular weight polymer. High resolution 1H NMR spectra in mixed solvent of THF-d 8 and hexane were also measured for comprehending thermoresponsive behavior of polymer solution in molecular level; however, any discontinuous change in the NMR signals around the cloud point could not be recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号