首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
Inertial stability of a vertical shear layer (Stewartson E1/4-layer) on the sidewall of a cylindrical tank with respect to stationary axisymmetric perturbations is inverstigated by means of a linear theory. The stability is determined by two non-dimensional parameters, the Rossby number Ro = U/2ΩL and Ekman number E = vH2, where U and L = (E/4)1/4H are the characteristic velocity and width of the shear layer, respectively, Ω the angular velocity of the basic rotation, v the kinematic viscosity and H the depth of the tank.

For a given Ekman number, the flow is more unstable for larger values of the Rossby number. For E = 10−4, which is a typical value of the Ekman number realized in rotating tank experiments, the critical Rossby number Roc for instability and the critical axial wavenumber mc non-dimensionalized by L−1 are found to be 1.3670 and 8.97, respectively. The value of Roc increases and that of mc decreases with increasing E.  相似文献   


2.
The existence and asymptotic behavior as ε → 0+ of periodic, almost periodic, and bounded solutions of the differential system x = f(t, x, y, ε), Ωy′ = g(t, x, y, ε), are considered where x, f; are n-vectors, y, g are m-vectors and Ω = diag{εh1}…, εhm for integral hi, h1 h2 …, hm. The principal tools are a lemma of Nagumo which allows the construction of appropriate upper and lower solutions and the asymptotic theory of singularly perturbed linear differential systems.  相似文献   

3.
4.
Flow regime transitions due to cavitation in the flow through an orifice   总被引:4,自引:0,他引:4  
This paper presents both experimental and theoretical aspects of the flow regime transitions caused by cavitation when water is passing through an orifice. Cavitation inception marks the transition from single-phase to two-phase bubbly flow; choked cavitation marks the transition from two-phase bubbly flow to two-phase annular jet flow.

It has been found that the inception of cavitation does not necessarily require that the minimum static pressure at the vena contracta downstream of the orifice, be equal to the vapour pressure liquid. In fact, it is well above the vapour pressure at the point of inception. The cavitation number [σ = (P3Pv)/(0.5 pV2); here P3 is the downstream pressure, Pv is the vapour pressure of the liquid, ρ is the density of the liquid and V is the average liquid velocity at the orifice] at inception is independent of the liquid velocity but strongly dependent on the size of the geometry. Choked cavitation occurs when this minimum pressure approaches the vapour pressure. The cavitation number at the choked condition is a function of the ratio of the orifice diameter (d) to the pipe diameter (D) only. When super cavitation occurs, the dimensionless jet length [L/(D - d); where L is the dimensional length of the jet] can be correlated by using the cavitation number. The vaporization rate of the surface of the liquid jet in super cavitation has been evaluated based on the experiments.

Experiments have also been conducted in which air was deliberately introduced at the vena contracta to simulate the flow regime transition at choked cavitation. Correlations have been obtained to calculate the critical air flow rate required to cause the flow regime transition. By drawing an analogy with choked cavitation, where the air flow rate required to cause the transition is zero, the vapour and released gas flow rate can be predicted.  相似文献   


5.
The lag-entrainment predictive scheme developed by Green et al. has been modified to include the pressure-gradient parameter Π1. In the original model suggested by Green et al. the mass-flow shape factor H1 is related to the common shape factor H, H1 = f(H). In the present model H1 is related to H, Reynolds number based on the local momentum thickness θ, and Π1; thus H1 = f(H, Reθ, Π1). The modified formula for H1, is introduced into the original lag-entrainment integral model. Calculations are made to examine the present model for the predictions of the development of boundary layers approaching separation studied experimentally by the authors. Slightly improved predictions are obtained using the model developed by El Telbany et al. However, the present model proved to give an improved representation of the development of wall shear stress in cases the two-equation turbulence model proved to be unsuccessful.  相似文献   

6.
N. D. Veksler 《Wave Motion》1986,8(6):525-536
The symmetric (S0) and antisymmetric (A0) Lamb-type waves generated in a thin elastic cylindrical shell by normal incidence of an acoustic wave have been considered. The typical frequency dependencies (FD) of the backscattered acoustic pressure at on observetion point in the far field are presented. The spectra of the S0 and A0 waves are marked on them. It was found that if the A0 wave is excited in the shell, then its phase velocity is greater than the sound velocity in the fluid surrounding the shell. The parameter which defines the center of the strong bending domain (SBD) is defined. It is shown that in this domain the A0 wave is practically non-dispersive. Phase velocity data for the A0 wave are given. Spectra and dispersion curves of the S0 wave for shells which have different relative thickness s and which are made of different materials have been examined.  相似文献   

7.
G. A. Kriegsmann   《Wave Motion》2002,36(4):457-472
A variational technique is employed to compute approximate propagation constants for electromagnetic waves in a dielectric structure which is periodic in the XY plane and translationally invariant in the Z-direction. The fundamental cell, in the periodic structure, is composed of a pore and the surrounding host media. The pore is a circle of radius R0 filled with a dielectric ε1 and the host dielectric characterized by ε2. The size of the cell is characterized by the length A which is R0.

Two limiting cases are considered. In the first, the pore size is assumed to be much smaller than the wavelength; this limit is motivated by microwave heating of porous material. The approximate propagation constants are explicitly computed for this case and are shown to depend upon the two dielectric constants, the relative areas of the two regions in the cell, and on a modal number. They are not given by a simple mixture formula.

In the second limit, the pore size is taken to be of the same order as the wavelength; this limit is motivated by the propagation of light in a holey fiber. In this case our argument directly yields the dispersion relationship recently derived by Ferrando et al. [Opt. Lett. 24 (1999) 276], using intuitive and physical reasoning. Thus, our method puts theirs into a mathematical framework from which other approximations might be deduced.  相似文献   


8.
A prototype of a wheel driven trailer was developed to simulate a wheel driven trailed root crop harvester. The mobility of the prototype tractor-trailer system was improved by driving the trailer wheels by a mounted engine. A mathematical model to predict the mobility and the stability of the system was developed. The model was validated by field experiments conducted in plowed, rotary tilled and untilled fields. The model was found to predict performance with a high accuracy. Parameter studies were conducted to investigate the effects of several design parameters, such as the peripheral velocity ratio (Rs), the weight of the trailer (m1), the trailer's C.G. location (LL) and the height of a hitch point (h), on the mobility and the stability of the system.  相似文献   

9.
An experimental investigation was carried out on the heat transfer due to a submerged slot jet of water impinging on a circular cylinder in crossflow. The cylinder diameter and the slot width are of the same order of magnitude, specifically Ds = 2.0 and 3.0 mm and Dc = 2.5 and 3.0 mm. The experimental apparatus allowed variation of the slot width, the cylinder diameter, and the distance from nozxle exit to heater. Conditions of impingement from the bottom (ascending flow) were taken into consideration as well as impingement from above (descending flow). The Nusselt number was determined as a function of Reynolds and Prandtl numbers in the range 1.5 × 103 < Re < 2.0 × 104, 2.7 < Pr < 7.0, and 1.5 ≤ z/Ds ≤ 10. The experimental data were correlated with a simple equation that fits 90% of the data with a precision of 20%.  相似文献   

10.
Asymptotic soliton trains arising from a ‘large and smooth’ enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup–Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr–Sommerfeld quantization rule which generalizes the usual rule to the case of ‘two potentials’ h0(x) and u0(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u0(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup–Boussinesq equations with predictions of the asymptotic theory is found.  相似文献   

11.
Flow of an incompressible viscous fluid contained in a cylindrical vessel (radius R, height H) is considered. Each of the cylinder endwalls is split into two parts which rotate steadily about the central axis with different rotation rates: the inner disk (r < r1) rotating at Ω1, and the outer annulus (r1 < r < R) rotating at Ω2. Numerical solutions to the axisymmetric Navier-Stokes equations are secured for small system Ekman numbers E ( v/(ΩH2)). In the linear regime, when the Rossby number Ro , the numerical results are shown to be compatible with the theoretical prediction as well as the available experimental measurements. Emphasis is placed on the results in the nonlinear regime in which Ro is finite. Details of the structures of azimuthai and meridional flows are presented by the numerical results. For a fixed Ekman number, the gross features of the flow remain qualitatively unchanged as Ro increases. The meridional flows are characterized by two circulation cells. The shear layer is a region of intense axial flow toward the endwall and of vanishing radial velocity. The thicknesses of the shear layer near r = r1 and the Ekman layer on the endwall scale with E and E , respectively. The numerical results are consistent with these scalings.  相似文献   

12.
The experimental data for heat transfer during nucleate pool boiling of saturated liquid metals on plain surfaces are surveyed and a new correlation is presented. The correlation is h = Cq0.7prm, where C and m are, respectively, 13.7 and 0.22 pr < 0.001 and 6.9 and 0.12 for pr > 0.001 (h is in W/m2 K and q in W/m2). This correlation has been verified with data for K, Na, Cs, Li, and Hg from 17 sources over the reduced pressure (pr) range of 4.3 × 10−6 to 1.8 × 10−2. The correlation of Subbotin et al. was found unsatisfactory, but a modified correlation was developed that also gives good agreement with most of the data.  相似文献   

13.
14.
In this paper, pressure spectra have been derived from the authors’ model (Eur. J. Mech., B/Fluids 12 (1) (1993) 31–42) developed by means of rapid distortion theory (RDT) of homogeneous low Reynolds number turbulent shear flow subjected to weak rotation. The combined effects of uniform shear dU1/dx2 and weak rotation Ω3 on the evolution of pressure spectra have been examined in terms of the rotation number 2Ω3/(dU1/dx2). It is found that the system rotation exhibits the opposite effect on the pressure field as compared with the influence of rotation on the velocity fluctuations.  相似文献   

15.
Gill and Sankarasubramanian's analysis of the dispersion of Newtonian fluids in laminar flow between two parallel walls are extended to the flow of non-Newtonian viscoelastic fluid (known as third-grade fluid) using a generalized dispersion model which is valid for all times after the solute injection. The exact expression is obtained for longitudinal convective coefficient K1(Γ), which shows the effect of the added viscosity coefficient Γ on the convective coefficient. It is seen that the value of the K1(Γ) for Γ≠0 is always smaller than the corresponding value for a Newtonian fluid. Also, the effect of the added viscosity coefficient on the K2(t,Γ) (which is a measure of the longitudinal dispersion coefficient of the solute) is explored numerically. Finally, the axial distribution of the average concentration Cm of the solute over the channel cross-section is determined at a fixed instant after the solute injection for several values of the added viscosity coefficient.  相似文献   

16.
17.
Dynamically relevant alignments are used in order to show that regions with weak vorticity are not structureless, non-Gaussian and dynamically not passive. for example, the structure of vorticity in quasi-homogeneous/isotropic turbulent flows is associated with strong alignment between vorticity ω and the eigenvectors of the rate of strain tensor λi (especially — but not only — between ω and λ2) rather than with intense vorticity only. Consequently, much larger regions of turbulent flow than just those with intense vorticity are spatially structured. The whole flow field — even with the weakest measurable enstrophy — is strongly non-Gaussian, which among other things is manifested in strong alignment between vorticity and the vortex stretching vector Wi ≡ ωjSij. It is shown that the quasi-two-dimensional regions corresponding to large cos(ω, λ2) are qualitatively different from purely two-dimensional ones, e.g. in that they possess essentially nonvanishing enstrophy generation, which is larger than its mean for the whole field.  相似文献   

18.
Experimental data and correlations available in the literature for the liquid holdup εL and the pressure gradient ΔPTP/L for gas-liquid pipe flow, generally, do not cover the domain 0 < εL < 0.06. Reliable pressure-drop correlations for this holdup range are important for calculating flow rates of natural gas, containing traces of condensate. In the present paper attention is focused on reliable measurements of εL and ΔPTPIL values and on the development of a phenomenological model for the liquid-holdup range 0 < εL < 0.06. This model is called the “apparent rough surface” model and is referred to as the ARS model. The experimental results presented in this paper refer to air-water and air-water + ethyleneglycol systems with varying transport properties in horizontal straight smooth glass tubes under steady-state conditions. The holdup and pressure gradient values predicted with the ARS model agree satisfactorily with both our experimental results and data obtained from the literature referring to small liquid-holdup values 0 < εL < 0.06. Further, it has been shown that in the domain 38 < < 72 mPa m the interfacial tension of the gas-liquid system has no significant effect on the liquid holdup. The pressure gradient, however, increases slightly with decreasing surface tension values.  相似文献   

19.
We consider the problem of turbulence generation at a vibrating grid in the x2x3 plane. Turbulence diffuses in the x1-direction. Analyzing the multi-point correlation equation using Lie-group analysis, we find three different invariant solutions (scaling laws): classical diffusion-like solution (heat equation like), decelerating diffusion-wave solution and finite domain diffusion due to rotation. All solutions have been obtained using Lie-group (symmetry) methods. It is shown that if only one spatial dimension is considered, models based on Reynolds averaging are only capable to model either the diffusion-like solution or the decelerating diffusion-wave solution. The latter solution is only admitted under certain algebraic constraints on the model constants; e.g. in case of the K– model the model constants need to obey the relation c2σK=2. Turbulent diffusion on a finite domain induced by rotation is not admitted by any of the classical models. Finally, in the appendix it is shown that Lele's transformation (Phys. Fluids 28(1) (1985) 64) leads to a complete analytic solution of the steady diffusion problem modelled by the K– equation.  相似文献   

20.
Using two orthogonal arrays of 16 X-wires, eight in the (x,y)-plane and eight in the (x,z)-plane, the effect of the Reynolds number in a turbulent plane far-wake has been investigated for two values of Reθ (based on the free stream velocity and the momentum thickness), i.e. 1350 and 4600. It is observed that as the Reynolds number increases the magnitudes of the measured Reynolds stresses increase, as does the size of two-point vorticity correlation iso-contours. Discernible differences are also observed in probability density function, spectra and three-dimensional topologies. The Reynolds number dependence seems to vanish when Reθ5000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号