首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We consider a constant coefficient coagulation equation with Becker–D?ring type interactions and power law input of monomers J 1(t) = α t ω, with α > 0 and . For this infinite dimensional system we prove solutions converge to similarity profiles as t and j converge to infinity in a similarity way, namely with either or constants, where is a function of t only. This work generalizes to the non-autonomous case a recent result of da Costa et al. (2004). Markov Processes Relat. Fields 12, 367–398. and provides a rigorous derivation of formal results obtained by Wattis J. Phys. A: Math. Gen. 37, 7823–7841. The main part of the approach is the analysis of a bidimensional non-autonomous system obtained through an appropriate change of variables; this is achieved by the use of differential inequalities and qualitative theory methods. The results about rate of convergence of solutions of the bidimensional system thus obtained are fed into an integral formula representation for the solutions of the infinite dimensional system which is then estimated by an adaptation of methods used by da Costa et al. (2004). Markov Processes Relat. Fields 12, 367–398.   相似文献   

2.
We investigate traveling wave solutions in a family of reaction-diffusion equations which includes the Fisher–Kolmogorov–Petrowskii–Piscounov (FKPP) equation with quadratic nonlinearity and a bistable equation with degenerate cubic nonlinearity. It is known that, for each equation in this family, there is a critical wave speed which separates waves of exponential decay from those of algebraic decay at one of the end states. We derive rigorous asymptotic expansions for these critical speeds by perturbing off the classical FKPP and bistable cases. Our approach uses geometric singular perturbation theory and the blow-up technique, as well as a variant of the Melnikov method, and confirms the results previously obtained through asymptotic analysis in [J.H. Merkin and D.J. Needham, (1993). J. Appl. Math. Phys. (ZAMP) A, vol. 44, No. 4, 707–721] and [T.P. Witelski, K. Ono, and T.J. Kaper, (2001). Appl. Math. Lett., vol. 14, No. 1, 65–73].  相似文献   

3.
The Dafermos regularization of a system of n hyperbolic conservation laws in one space dimension has, near a Riemann solution consisting of n Lax shock waves, a self-similar solution u = u ε(X/T). In Lin and Schecter (2003, SIAM J. Math. Anal. 35, 884–921) it is shown that the linearized Dafermos operator at such a solution may have two kinds of eigenvalues: fast eigenvalues of order 1/ε and slow eigenvalues of order one. The fast eigenvalues represent motion in an initial time layer, where near the shock waves solutions quickly converge to traveling-wave-like motion. The slow eigenvalues represent motion after the initial time layer, where motion between the shock waves is dominant. In this paper we use tools from dynamical systems and singular perturbation theory to study the slow eigenvalues. We show how to construct asymptotic expansions of eigenvalue-eigenfunction pairs to any order in ε. We also prove the existence of true eigenvalue-eigenfunction pairs near the asymptotic expansions.  相似文献   

4.
We show that Kruzhkov’s theory of entropy solutions to multidimensional scalar conservation laws (Kruzhkov in Mat Sb (N.S.), 81(123), 228–255, 1970) can be entirely recast in L 2 and fits into the general theory of maximal monotone operators in Hilbert spaces. Our approach is based on a combination of level-set, kinetic and transport-collapse approximations, in the spirit of previous works by Brenier (in C R Acad Sci Paris Ser I Math, 292, 563–566, 1981; in J Diff Equ, 50, 375–390, 1983; in SIAM J Numer Anal, 21, 1013–1037; in Methods Appl Anal, 11, 515–532, 2004), Giga and Miyakawa (in Duke Math J, 50, 505–515, 1983), and Tsai et al. (in Math Comp, 72, 159–181, 2003).  相似文献   

5.
We consider the 3-D evolutionary Navier–Stokes equations with a Navier slip-type boundary condition, see (1.2), and study the problem of the strong convergence of the solutions, as the viscosity goes to zero, to the solution of the Euler equations under the zero-flux boundary condition. We prove here, in the flat boundary case, convergence in Sobolev spaces W kp (Ω), for arbitrarily large k and p (for previous results see Xiao and Xin in Comm Pure Appl Math 60:1027–1055, 2007 and Beir?o da Veiga and Crispo in J Math Fluid Mech, 2009, doi:). However this problem is still open for non-flat, arbitrarily smooth, boundaries. The main obstacle consists in some boundary integrals, which vanish on flat portions of the boundary. However, if we drop the convective terms (Stokes problem), the inviscid, strong limit result holds, as shown below. The cause of this different behavior is quite subtle. As a by-product, we set up a very elementary approach to the regularity theory, in L p -spaces, for solutions to the Navier–Stokes equations under slip type boundary conditions.  相似文献   

6.
Current proofs of time independent energy bounds for solutions of the time dependent Navier–Stokes equations, and of bounds for the Dirichlet norms of steady solutions, are dependent upon the construction of an extension of the prescribed boundary values into the domain that satisfies the inequality (1.1) below, for a value of κ less than the kinematic viscosity. It is known from the papers of Leray (J Math Pure Appl 12:1–82, 1993), Hopf (Math Ann 117:764–775, 1941) and Finn (Acta Math 105:197–244, 1961) that such a construction is always possible if the net flux of the boundary values across each individual component of the boundary is zero. On the other hand, the nonexistence of such an extension, for small values of κ, has been shown by Takeshita (Pac J Math 157:151–158, 1993) for any two or three-dimensional annular domain, when the boundary values have a net inflow toward the origin across each component of the boundary. Here, we prove a similar result for boundary values that have a net outflow away from the origin across each component of the boundary. The proof utilizes a class of test functions that can detect and measure deformation. It appears likely that much of our reasoning can be applied to other multiply connected domains.  相似文献   

7.
This paper concerns the regularity of a capillary graph (the meniscus profile of liquid in a cylindrical tube) over a corner domain of angle α. By giving an explicit construction of minimal surface solutions previously shown to exist (Indiana Univ. Math. J. 50 (2001), no. 1, 411–441) we clarify two outstanding questions. Solutions are constructed in the case α = π/2 for contact angle data (γ1, γ2) = (γ, π − γ) with 0 < γ < π. The solutions given with |γ − π/2| < π/4 are the first known solutions that are not C2 up to the corner. This shows that the best known regularity (C1, ∈) is the best possible in some cases. Specific dependence of the H?lder exponent on the contact angle for our examples is given. Solutions with γ = π/4 have continuous, but horizontal, normal vector at the corners in accordance with results of Tam (Pacific J. Math. 124 (1986), 469–482). It is shown that our examples are C0, β up to and including the corner for any β < 1. Solutions with |γ − π/2| > π/4 have a jump discontinuity at the corner. This kind of behavior was suggested by numerical work of Concus and Finn (Microgravity sci. technol. VII/2 (1994), 152–155) and Mittelmann and Zhu (Microgravity sci. technol. IX/1 (1996), 22–27). Our explicit construction, however, allows us to investigate the solutions quantitatively. For example, the trace of these solutions, excluding the jump discontinuity, is C2/3.  相似文献   

8.
The Newtonian circular restricted four-body problem is considered. We obtain nonlinear algebraic equations determining equilibrium solutions in the rotating frame and find six possible equilibrium configurations of the system. Studying the stability of equilibrium solutions, we prove that the radial equilibrium solutions are unstable, while the bisector equilibrium solutions are stable in Lyapunov’s sense if the mass parameter satisfies the conditions μ ∈ (0, μ0, where μ0 is a sufficiently small number, and μ ≠ μj, j = 1, 2, 3. We also prove that, for μ = μ1 and μ = μ3, the resonance conditions of the third order and the fourth order, respectively, are satisfied and, for these values of μ, the bisector equilibrium solutions are unstable and stable in Lyapunov’s sense, respectively. All symbolic and numerical calculations are done with the Mathematica computer algebra system. Published in Neliniini Kolyvannya, Vol. 10, No. 1, pp. 66–82, January–March, 2007.  相似文献   

9.
We study the one-dimensional stationary solutions of the integro-differential equation which, as proved in Giacomin and Lebowitz (J Stat Phys 87:37–61, 1997; SIAM J Appl Math 58:1707–1729, 1998), describes the limit behavior of the Kawasaki dynamics in Ising systems with Kac potentials. We construct stationary solutions with non-zero current and prove the validity of the Fourier law in the thermodynamic limit showing that below the critical temperature the limit equilibrium profile has a discontinuity (which defines the position of the interface) and satisfies a stationary free boundary Stefan problem. Under-cooling and over-heating effects are also studied: we show that if metastable values are imposed at the boundaries then the mesoscopic stationary profile is no longer monotone and therefore the Fourier law is not satisfied. It regains its validity however in the thermodynamic limit where the limit profile is again monotone away from the interface.  相似文献   

10.
The Dafermos regularization of a system of n conservation laws in one space dimension admits smooth self-similar solutions of the form u=u(X/T). In particular, there are such solutions near a Riemann solution consisting of n possibly large Lax shocks. In Lin and Schecter (2004, SIAM. J. Math. Anal. 35, 884–921), eigenvalues and eigenfunctions of the linearized Dafermos operator at such a solution were studied using asymptotic expansions. Here we show that the asymptotic expansions correspond to true eigenvalue–eigenfunction pairs. The proofs use geometric singular perturbation theory, in particular an extension of the Exchange Lemma.  相似文献   

11.
In the last 30 years, some authors have been studying several classes of boundary value problems (BVP) for partial differential equations (PDE) using the method of reduction to obtain a difference equation with continuous argument which behavior is determined by the iteration of a one-dimensional (1D) map (see, for example, Romanenko, E. Yu. and Sharkovsky, A. N., International Journal of Bifurcation and Chaos 9(7), 1999, 1285–1306; Sharkovsky, A. N., International Journal of Bifurcation and Chaos 5(5), 1995, 1419–1425; Sharkovsky, A. N., Analysis Mathematica Sil 13, 1999, 243–255; Sharkovsky, A. N., in “New Progress in Difference Equations”, Proceedings of the ICDEA'2001, Taylor and Francis, 2003, pp. 3–22; Sharkovsky, A. N., Deregel, Ph., and Chua, L. O., International Journal of Bifurcation and Chaos 5(5), 1995, 1283–1302; Sharkovsky, A. N., Maistrenko, Yu. L., and Romanenko, E. Yu., Difference Equations and Their Applications, Kluwer, Dordrecht, 1993.). In this paper we consider the time-delayed Chua's circuit introduced in (Sharkovsky, A. N., International Journal of Bifurcation and Chaos 4(5), 1994, 303–309; Sharkovsky, A. N., Maistrenko, Yu. L., Deregel, Ph., and Chua, L. O., Journal of Circuits, Systems and Computers 3(2), 1993, 645–668.) which behavior is determined by properties of one-dimensional map, see Sharkovsky, A. N., Deregel, Ph., and Chua, L. O., International Journal of Bifurcation and Chaos 5(5), 1995, 1283–1302; Maistrenko, Yu. L., Maistrenko, V. L., Vikul, S. I., and Chua, L. O., International Journal of Bifurcation and Chaos 5(3), 1995, 653–671; Sharkovsky, A. N., International Journal of Bifurcation and Chaos 4(5), 1994, 303–309; Sharkovsky, A. N., Maistrenko, Yu. L., Deregel, Ph., and Chua, L. O., Journal of Circuits, Systems and Computers 3(2), 1993, 645–668. To characterize the time-evolution of these circuits we can compute the topological entropy and to distinguish systems with equal topological entropy we introduce a second topological invariant.  相似文献   

12.
We consider reaction diffusion equations of the prototype form u t = u xx + λ u + |u| p-1 u on the interval 0 < x < π, with p > 1 and λ > m 2. We study the global blow-up dynamics in the m-dimensional fast unstable manifold of the trivial equilibrium u ≡ 0. In particular, sign-changing solutions are included. Specifically, we find initial conditions such that the blow-up profile u(t, x) at blow-up time t = T possesses m + 1 intervals of strict monotonicity with prescribed extremal values u 1, . . . ,u m . Since u k = ± ∞ at blow-up time t = T, for some k, this exhausts the dimensional possibilities of trajectories in the m-dimensional fast unstable manifold. Alternatively, we can prescribe the locations x = x 1, . . . ,x m of the extrema, at blow-up time, up to a one-dimensional constraint. The proofs are based on an elementary Brouwer degree argument for maps which encode the shapes of solution profiles via their extremal values and extremal locations, respectively. Even in the linear case, such an “interpolation of shape” was not known to us. Our blow-up result generalizes earlier work by Chen and Matano (1989), J. Diff. Eq. 78, 160–190, and Merle (1992), Commun. Pure Appl. Math. 45(3), 263–300 on multi-point blow-up for positive solutions, which were not constrained to possess global extensions for all negative times. Our results are based on continuity of the blow-up time, as proved by Merle (1992), Commun. Pure Appl. Math. 45(3), 263–300, and Quittner (2003), Houston J. Math. 29(3), 757–799, and on a refined variant of Merle’s continuity of the blow-up profile, as addressed in the companion paper Matano and Fiedler (2007) (in preparation). Dedicated to Palo Brunovsky on the occasion of his birthday.  相似文献   

13.
In this work, we show that for linear upper triangular systems of differential equations, we can use the diagonal entries to obtain the Sacker and Sell, or Exponential Dichotomy, and also –under some restrictions– the Lyapunov spectral intervals. Since any bounded and continuous coefficient matrix function can be smoothly transformed to an upper triangular matrix function, our results imply that these spectral intervals may be found from scalar homogeneous problems. In line with our previous work [Dieci and Van Vleck (2003), SIAM J. Numer. Anal. 40, 516–542], we emphasize the role of integral separation. Relationships between different spectra are shown, and examples are used to illustrate the results and define types of coefficient matrix functions that lead to continuous Sacker–Sell spectrum and/or continuous Lyapunov spectrum.   相似文献   

14.
The goal of this paper is to present a flexible multibody formulation for Euler-Bernoulli beams involving large displacements. This method is based on a discretisation of internal and kinetic energies. The beam is represented by its line of centroids and each section is oriented by a frame defined by three Euler angles. We apply a finite element formulation to describe the evolution of these angles along the neutral fibre and describe the internal energy. The kinetic energy is approximated as the one of two rigid bars tangent to the neutral fibre at the ends of the beam. We derive the equations of motion from a Lagrange formulation. These equations are solved using the Newmark method or/and the Newton-Raphson technique. We solve some very classic problems taken from the literature as the curved beam presented by Simo [Simo, J. C., ‘A three-dimensional finite-strain rod model. the three-dimensional dynamic problem. Part I’, Comput. Meths. Appl. Mech. Engrg. 49, 1985, 55–70; Simo, J. C. and Vu-Quoc, L., ‘A three-dimensional finite-strain rod model, Part II: Computationals aspects’, Comput. Meths. Appl. Mech. Engrg. 58, 1988, 79–116] and Lee [Lee, Kisu, ‘Analysis of large displacements and large rotations of three-dimensional beams by using small strains and unit vectors’, Commun. Numer. Meth. Engrg. 13, 1997, 987–997] or the rotational rod presented by Avello [Avello, A., Garcia de Jalon, J., and Bayo, E., ‘Dynamics of flexible multibody systems using cartesian co-ordinates and large displacement theory’, Int. J. Num. Methods in Engineering 32, 1991, 1543–1563] and Simo [Simo, J. C. and Vu-Quoc, L., ‘On the dynamics of flexible beams under large overall motions – the planar case. Part I’ Jour. of Appl. Mech. 53, 1986, 849–854; Simo, J. C. and Vu-Quoc, L., ‘On the dynamics of flexible beams under large overall motions – the planar case. Part II’, Jour. of Appl. Mech. 53, 1986, 855–863].  相似文献   

15.
A systematic application of the group analysis method for modeling fluids with internal inertia is presented. The equations studied include models such as the nonlinear one-velocity model of a bubbly fluid (with incompressible liquid phase) at small volume concentration of gas bubbles (Iordanski Zhurnal Prikladnoj Mekhaniki i Tekhnitheskoj Fiziki 3, 102–111, 1960; Kogarko Dokl. AS USSR 137, 1331–1333, 1961; Wijngaarden J. Fluid Mech. 33, 465–474, 1968), and the dispersive shallow water model (Green and Naghdi J. Fluid Mech. 78, 237–246, 1976; Salmon 1988). These models are obtained for special types of the potential function W(r,[(r)\dot],S){W(\rho,\dot \rho,S)} (Gavrilyuk and Teshukov Continuum Mech. Thermodyn. 13, 365–382, 2001). The main feature of the present paper is the study of the potential functions with W S  ≠ 0. The group classification separates these models into 73 different classes.  相似文献   

16.
In this paper we consider a five-parameter family of planar vector fields where μ = (μ 1, μ 2, μ 3, μ 4, μ 5), which is a small parameter vector, and c(0) ≠ 0. The family X μ represents the generic unfolding of a class of nilpotent cusp of codimension five. We discuss the local bifurcations of X μ, which exhibits numerous kinds of bifurcation phenomena including Bogdanov-Takens bifurcations of codimension four in Li and Rousseau (J. Differ. Eq. 79, 132–167, 1989) and Dumortier and Fiddelaers (In: Global analysis of dynamical systems, 2001), and Bogdanov-Takens bifurcations of codimension three in Dumortier et al. (Ergodic Theory Dynam. Syst. 7, 375–413, 1987) and Dumortier et al. (Bifurcations of planar vector fields. Nilpotent singularities and Abelian integrals, 1991). After making some rescalings, we obtain the truncated systems of X μ . For a truncated system, all possible bifurcation sets and related phase portraits are obtained. When the truncated system is a Hamiltonian system, the bifurcation diagram and the related phase portraits are given too. Hopf bifurcations are studied for another truncated system. And it shows that the system has the Hopf bifurcations of codimension at most three, and at most three limit cycles occur in the small neighborhood of the Hopf singularity. Dedicated to Professor Zhifen Zhang in the occasion of her 80th birthday  相似文献   

17.
The compressible Navier–Stokes–Poisson (NSP) system is considered in ${\mathbb {R}^3}The compressible Navier–Stokes–Poisson (NSP) system is considered in \mathbb R3{\mathbb {R}^3} in the present paper, and the influences of the electric field of the internal electrostatic potential force governed by the self-consistent Poisson equation on the qualitative behaviors of solutions is analyzed. It is observed that the rotating effect of electric field affects the dispersion of fluids and reduces the time decay rate of solutions. Indeed, we show that the density of the NSP system converges to its equilibrium state at the same L 2-rate (1+t)-\frac 34{(1+t)^{-\frac {3}{4}}} or L -rate (1 + t)−3/2 respectively as the compressible Navier–Stokes system, but the momentum of the NSP system decays at the L 2-rate (1+t)-\frac 14{(1+t)^{-\frac {1}{4}}} or L -rate (1 + t)−1 respectively, which is slower than the L 2-rate (1+t)-\frac 34{(1+t)^{-\frac {3}{4}}} or L -rate (1 + t)−3/2 for compressible Navier–Stokes system [Duan et al., in Math Models Methods Appl Sci 17:737–758, 2007; Liu and Wang, in Comm Math Phys 196:145–173, 1998; Matsumura and Nishida, in J Math Kyoto Univ 20:67–104, 1980] and the L -rate (1 + t)p with p ? (1, 3/2){p \in (1, 3/2)} for irrotational Euler–Poisson system [Guo, in Comm Math Phys 195:249–265, 1998]. These convergence rates are shown to be optimal for the compressible NSP system.  相似文献   

18.
We prove radial symmetry (or axial symmetry) of the mountain pass solution of variational elliptic systems − AΔu(x) + ∇ F(u(x)) = 0 (or − ∇.(A(r) ∇ u(x)) + ∇ F(r,u(x)) = 0,) u(x) = (u 1(x),...,u N (x)), where A (or A(r)) is a symmetric positive definite matrix. The solutions are defined in a domain Ω which can be , a ball, an annulus or the exterior of a ball. The boundary conditions are either Dirichlet or Neumann (or any one which is invariant under rotation). The mountain pass solutions studied here are given by constrained minimization on the Nehari manifold. We prove symmetry using the reflection method introduced in Lopes [(1996), J. Diff. Eq. 124, 378–388; (1996), Eletron. J. Diff. Eq. 3, 1–14].  相似文献   

19.
Stability of Viscous Profiles: Proofs Via Dichotomies   总被引:1,自引:0,他引:1  
In this paper we give a self-contained approach to a nonlinear stability result, as t → ∞, for a viscous profile corresponding to a strong shock of a system of conservation laws. The initial perturbation is assumed to be small and to have zero mass. As t→ ∞, the solution with perturbed initial data is shown to approach the viscous profile in maximum norm.A complete proof of the stability result is given under slightly weaker assumptions than those in [Comm. Pure Appl. Math. LI (1998) 1397]; our assumptions, techniques, and results also differ from those in [Indiana Univ. Math. J. 47 (1998) 741]. To derive resolvent estimates for a linearized problem, we use the theory of exponential dichotomies for ODEs extensively. A main tool provided by this theory is a quantitative L 1 perturbation theorem for dichotomies, which yields the delicate resolvent estimates for s near zero.When showing that the resolvent estimates imply nonlinear stability, we essentially follow the arguments in [Comm. Pure Appl. Math. LI (1998) 1397; SIAM J. Math. Anal. 20 (1999) 401], but note some simplifications.  相似文献   

20.
The Cauchy problem for the 1D real-valued viscous Burgers equation u t +uu x  = u xx is globally well posed (Hopf in Commun Pure Appl Math 3:201–230, 1950). For complex-valued solutions finite time blow-up is possible from smooth compactly supported initial data, see Poláčik and Šverák (J Reine Angew Math 616:205–217, 2008). It is also proved in Poláčik and Šverák (J Reine Angew Math 616:205–217, 2008) that the singularities for the complex-valued solutions are isolated if they are not present in the initial data. In this paper we study the singularities in more detail. In particular, we classify the possible blow-up rates and blow-up profiles. It turns out that all singularities are of type II and that the blow-up profiles are regular steady state solutions of the equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号