首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
Using orthogonal localized occupied orbitals we have developed and implemented a parallelized local second-order M?ller-Plesset (MP2) method based on the idea developed by Head-Gordon and co-workers. A subset of nonorthogonal correlation functions (the orbital domain) was assigned to each of the localized occupied orbitals using a distance criterion and excitations from localized occupied orbitals that were arranged into subsets. The correlation energy was estimated using a partial diagonalization and an iterative efficient method for solving large-scale linear equations. Some illustrative calculations are provided for molecules with up to 1484 Cartesian basis sets. The orbital domain sizes were found to be independent of the molecular size, and the present local MP2 method covered about 98%-99% of the correlation energy of the conventional canonical MP2 method.  相似文献   

2.
A non‐iterative algorithm for the localization of molecular orbitals (MOs) from complete active space self consistent field (CASSCF) and for single‐determinantal wave functions on predefined moieties is given. The localized fragment orbitals can be used to analyze chemical reactions between fragments and also the binding of fragments in the product molecule with a fragments‐in‐molecules approach by using a valence bond expansion of the CASSCF wave function. The algorithm is an example of the orthogonal Procrustes problem, which is a matrix optimization problem using the singular value decomposition. It is based on the similarity of the set of MOs for the moieties to the localized MOs of the molecule; the similarity is expressed by overlap matrices between the original fragment MOs and the localized MOs. For CASSCF wave functions, localization is done independently in the space of occupied orbitals and active orbitals, whereas, the space of virtual orbitals is mostly uninteresting. Localization of Hartree–Fock or Kohn–Sham density functional theory orbitals is not straightforward; rather, it needs careful consideration, because in this case some virtual orbitals are needed but the space of virtual orbitals depends on the basis sets used and causes considerable problems due to the diffuse character of most virtual orbitals. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Using the three‐level energy optimization procedure combined with a refined version of the least‐change strategy for the orbitals—where an explicit localization is performed at the valence basis level—it is shown how to more efficiently determine a set of local Hartree–Fock orbitals. Further, a core–valence separation of the least‐change occupied orbital space is introduced. Numerical results comparing valence basis localized orbitals and canonical molecular orbitals as starting guesses for the full basis localization are presented. The results show that the localization of the occupied orbitals may be performed at a small computational cost if valence basis localized orbitals are used as a starting guess. For the unoccupied space, about half the number of iterations are required if valence localized orbitals are used as a starting guess compared to a canonical set of unoccupied Hartree–Fock orbitals. Different local minima may be obtained when different starting guesses are used. However, the different minima all correspond to orbitals with approximately the same locality. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The ab initio molecular-dynamics formalism of Car and Parrinello is extended to preserve the locality of the orbitals. The supplementary term in the Lagrangian does not affect the nuclear dynamics, but ensures "on the fly" localization of the electronic orbitals within a periodic supercell in the Gamma-point approximation. The relationship between the resulting equations of motion and the formation of a gauge-invariant Lagrangian combined with a gauge-fixing procedure is briefly discussed. The equations of motion can be used to generate a very stable and easy to implement numerical integration algorithm. It is demonstrated that this algorithm can be used to compute the trajectory of the maximally localized orbitals, known as Wannier orbitals, in ab initio molecular dynamics with only a modest increase in the overall computer time. In the present paper, the new method is implemented within the generalized gradient approximation to Kohn-Sham density-functional theory employing plane wave basis sets and atomic pseudopotentials. In the course of the presentation, we briefly discuss how the present approach can be combined with localized basis sets to design fast linear scaling ab initio molecular-dynamics methods.  相似文献   

5.
We have developed a linear scaling algorithm for calculating maximally localized Wannier functions (MLWFs) using atomic orbital basis. An O(N) ground state calculation is carried out to get the density matrix (DM). Through a projection of the DM onto atomic orbitals and a subsequent O(N) orthogonalization, we obtain initial orthogonal localized orbitals. These orbitals can be maximally localized in linear scaling by simple Jacobi sweeps. Our O(N) method is validated by applying it to water molecule and wurtzite ZnO. The linear scaling behavior of the new method is demonstrated by computing the MLWFs of boron nitride nanotubes.  相似文献   

6.
Stability criterion for organic ferromagnetism is derived from crystal orbital method. For a given flat-band system, there exists a unique set of Wannier functions localized near each unit cell, which should be symmetric with respect to the lattice vector. The set of Wannier functions minimizes the exchange integral of the system within the freedom of degeneracy. When each Wannier function spans common atoms between the adjacent cells, the system becomes ferromagnetic. On the other hand, when each Wannier function spreads only at one unit cell, the system becomes antiferromagnetic. The proof of this rule is given by variational principle.  相似文献   

7.
The application of the MBPT in the localized representation requires that both the occupied and the virtual orbitals obtained by the canonical HF equation should be localized. The localization of the occupied orbitals is straightforward in general by any localization method. It is shown that by using Boys' method the localized virtual orbitals are spatially well separated and transferable not only in minimal basis sets.  相似文献   

8.
The effects of Gaussian basis set contraction and addition of polarization functions on H2O localized orbitals have been studied at the experimental geometry. It is shown that the electric moments and moment features of localized orbitals are not influenced very much by basis set quality variations, as going from medium size to enlarged basis sets. The difference between bond pair and lone pair charge densities was found to be larger on approaching the Hartree-Fock limit. A minimal basis set, however, does not suitably characterize the localized charge distributions.  相似文献   

9.
The external localization procedure of Magnasco and Perico is extended to the unoccupied molecular orbitals of the Fock-operator. The formal correspondence between bonding orbitals and localized antibonding MOs is demonstrated. Localized occupied and virtual one-electron functions are calculated within a semiempirical INDO-Hamiltonian and are analyzed; the externally localized occupied MOs are compared with energy localized orbitals computed by the Edmiston and Ruedenberg procedure. Various applications of the fully localized (occupied and virtual) MO set are discussed.  相似文献   

10.
The method of local increments is used in connection with an embedded cluster approach and wave function based quantum chemical ab initio methods to describe the adsorption of a single CO molecule on the MgO(001) surface. The first step in this approach is a conventional Hartree-Fock calculation. The occupied orbitals are then localized by means of the Foster-Boys localization procedure, and the full system is decomposed into several "subunits" that consist of the orbitals localized at the CO molecule and at the Mg and O atoms of the MgO cluster. The correlation energy is expanded into a series of local n-body increments that are evaluated separately and independently. In this way, big savings in computer time can be achieved because (a) the treatment of a large system is replaced with a series of much faster calculations for small subsystems and (b) the big basis sets necessary for describing dispersion effects are only needed for the atoms in the respective subsystem while all other atoms can be treated by medium size Hartree-Fock type basis sets. The coupled electron pair approach, CEPA, an approximate coupled cluster method, is used to calculate the correlation energies of the various subsystems. For the vertical adsorption of CO on top a Mg atom of the MgO(001) surface with the C atom toward Mg, the individual one- and two-body increments are calculated as functions of the CO-MgO separation and a full potential energy curve is constructed from them. A very shallow minimum with an adsorption energy of 0.016 eV at a Mg-C distance of 3.04 ? is found at the Hartree-Fock level, while inclusion of correlation (dispersion) effects shortens the Mg-C distance to 2.59 ? and yields a much larger adsorption energy of 0.124 eV. This is in very good agreement with the best experimental value of 0.14 eV. The basis set superposition error, BSSE, was fully corrected for by the counterpoise method and the bonding mechanism was analyzed at the Hartree-Fock level by means of the constrained space orbital variation, CSOV, analysis.  相似文献   

11.
Rappoport D 《Chemphyschem》2011,12(17):3404-3413
Quality measures for Gaussian basis sets are proposed that are based on principal angles between the basis set and reference molecular orbitals. The principal angles are obtained from the cosine-sine (CS) decomposition of orthogonal matrices and yield detailed information about basis-set convergence with respect to different regions of space. Principal angles for occupied orbitals show excellent correlation with basis-set errors in ground-state energies. Furthermore, ground-state bias in finite basis sets can be estimated from the relation between principal angles for occupied and Rydberg orbitals. Ground-state bias is observed in basis sets including extensive diffuse augmentation and affects the quality of computed molecular response properties. Principal angles and ground-state bias are investigated for the H-Ne atoms and a series of diatomics using numerical Hartree-Fock calculations as a reference. Convergence of ground-state energies and static polarizabilities is studied for the hierarchies of correlation-consistent and Karlsruhe segmented def2 basis sets including different levels of diffuse augmentation.  相似文献   

12.
It is demonstrated that a set of local orthonormal Hartree-Fock (HF) molecular orbitals can be obtained for both the occupied and virtual orbital spaces by minimizing powers of the orbital variance using the trust-region algorithm. For a power exponent equal to one, the Boys localization function is obtained. For increasing power exponents, the penalty for delocalized orbitals is increased and smaller maximum orbital spreads are encountered. Calculations on superbenzene, C(60), and a fragment of the titin protein show that for a power exponent equal to one, delocalized outlier orbitals may be encountered. These disappear when the exponent is larger than one. For a small penalty, the occupied orbitals are more local than the virtual ones. When the penalty is increased, the locality of the occupied and virtual orbitals becomes similar. In fact, when increasing the cardinal number for Dunning's correlation consistent basis sets, it is seen that for larger penalties, the virtual orbitals become more local than the occupied ones. We also show that the local virtual HF orbitals are significantly more local than the redundant projected atomic orbitals, which often have been used to span the virtual orbital space in local correlated wave function calculations. Our local molecular orbitals thus appear to be a good candidate for local correlation methods.  相似文献   

13.
We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code in combination with maximally localized Wannier functions and the norm-conserving pseudopotential code SIESTA which applies an atomic orbital basis set. All calculations have been converged with respect to the supercell size and the number of k|| points in the surface plane. For all systems we find that the SIESTA transmission functions converge toward the plane-wave result as the SIESTA basis is enlarged. Overall, we find that an atomic basis with double zeta and polarization is sufficient (and in some cases, even necessary) to ensure quantitative agreement with the plane-wave calculation. We observe a systematic downshift of the SIESTA transmission functions relative to the plane-wave results. The effect diminishes as the atomic orbital basis is enlarged; however, the convergence can be rather slow.  相似文献   

14.
A detailed study on the accuracy attainable with numerical atomic orbitals in the context of pseudopotential first-principles density functional theory is presented. Dimers of first- and second-row elements are analyzed: bond lengths, atomization energies, and Kohn-Sham eigenvalue spectra obtained with localized orbitals and with plane-wave basis sets are compared. For each dimer, the cutoff radius, the shape, and the number of the atomic basis orbitals are varied in order to maximize the accuracy of the calculations. Optimized atomic orbitals are obtained following two routes: (i) maximization of the projection of plane wave results into atomic orbital basis sets and (ii) minimization of the total energy with respect to a set of primitive atomic orbitals as implemented in the OPENMX software package. It is found that by optimizing the numerical basis, chemical accuracy can be obtained even with a small set of orbitals.  相似文献   

15.
In this work the effect of the basis set superposition error (BSSE) is explored with the counterpoise method on the occupied and unoccupied Hartree-Fock (HF) and Kohn-Sham (KS) orbitals. Three different systems linked by hydrogen bonds, H(2)O...FH, H(2)O...H(2)O, and H(2)O...CFH(3), were studied by using the basis set families cc-pVXZ and aug-cc-pVXZ (X = D, T, Q). The basis sets were tested with the HF method and two approximations for the exchange-correlation functional of KS: a generalized gradient approximation and a hybrid approach. In addition to these methods, the second-order M?ller-Plesset perturbation theory, MP2, was considered. It was found that the presence of the "ghost" basis set affects the orbitals in two ways: (1) The occupied KS orbitals are more sensitive to the presence of this "ghost" basis set than the occupied HF orbitals. For this reason the BSSE observed in HF is less than that obtained with KS. (2) The unoccupied HF orbitals are more sensitive to the presence of the "ghost" basis set than their corresponding occupied orbitals. Because the MP2 method uses both, occupied and unoccupied HF orbitals, to compute the total energy, the contribution of the BSSE is bigger than that obtained with HF or KS methodologies.  相似文献   

16.
In this paper we extend our density-functional theory calculations, with generalized gradient approximation and hybrid functionals, using Slater-type orbitals (STOs), to the determination of second-order molecular properties. The key to the entire methodology involves the fitting of all STO basis function products to an auxiliary STO basis, through the minimization of electron-repulsion integrals. The selected properties are (i) dipole polarizabilities, (ii) nuclear magnetic shielding constants, and (iii) nuclear spin-spin coupling constants. In all cases the one-electron integrals involving STOs were evaluated by quadrature. The implementation for (ii) involved some complexity because we used gauge-including atomic orbitals. The presence of two-electron integrals on the right-hand side of the coupled equations meant that the fitting procedure had to be implemented. For (iii) in the hybrid case, fitting procedures were again required for the exchange contributions. For each property we studied a number of small molecules. We first obtained an estimate of the basis set limit using Gaussian-type orbitals (GTOs). We then showed how it is possible to reproduce these values using a STO basis set. For (ii) a regular TZ2P quality STO basis was adequate; for (i) the addition of one set of diffuse functions (determined by Slater's rules) gave the required accuracy; for (iii) it was necessary to add a set of 1s functions, including one very tight function, to give the desired result. In summary, we show that it is possible to predict second-order molecular properties using STO basis sets with an accuracy comparable with large GTO basis sets. We did not encounter any major difficulties with either the selection of the bases or the implementation of the procedures. Although the energy code (especially in the hybrid case) may not be competitive with a regular GTO code, for properties we find that STOs are more attractive.  相似文献   

17.
Electronic wavefunctions that describe molecules in the full optimized reaction space (FORS) are multiconfigurational wavefunctions which are invariant under non-singular linear transformations of the occupied molecular orbitals. They offer therefore a considerably wider scope for orbital interpretations than the single-configuration Hartree-Fock approximation. For example they can be analyzed in terms of natural MOs and in terms of localized MOs. The latter turn out to be remarkably atomic in character and a new localization procedure can be formulated which yields atom-adapted molecular orbitals. These have the character of minimal-basis-set AOs that are optimally adapted to the molecular environment and furnish an unambigious atomic population analysis. On the other hand, chemically adapted molecular orbitals can be defined by an appropriate compromise between natural orbitals and localized orbitals. The freedom to use, as configuration-generating molecular orbitals, atom-adapted FORS MOs as well as chemically adapted FORS MOs makes FORS wavefunctions particularly suitable for chemical interpretations. The ensuing analysis establishes the minimal basis set (in molecule-adapted form) as a theoretically sound concept for the understanding of accurate molecular wavefunctions. An illustrative example is discussed.  相似文献   

18.
The computational considerations involved in calculating ordinary and rotatory intensities and electronic excitation energies in the random phase approximation (RPA ) are examined. We employ a localized orbital formulation in order to analyze the results in terms of local and charge-transfer excitations. Occupied orbitals are localized by the Foster–Boys procedure. The virtual space is transformed into a localized “valence” set that maximizes dipole strengths with the occupied counterparts, and a delocalized remainder. The two-electron integral transformation is performed with an efficient algorithm, based on Diercksen's, that generates only the particle–hole-type integrals required in the RPA . The lowest solutions of the RPA equations are obtained iteratively using a modification of the Davidson-Liu simultaneous vector expansion method. This allows the inclusion of the entire set of particle–hole states supported by a basis set of up to 102 orbitals. Calculations at this level give better excitation energies and intensities than SDCI methods, at substantial savings in computational effort. Comparative timings, computed results and analysis in terms of localized orbitals are given for planar and distorted ethylene using extended atomic orbital bases including diffuse functions. The results for planar ethylene are in excellent agreement with experiment.  相似文献   

19.
A general form of orbital invariant explicitly correlated second-order closed-shell Moller-Plesset perturbation theory (MP2-F12) is derived, and compact working equations are presented. Many-electron integrals are avoided by resolution of the identity (RI) approximations using the complementary auxiliary basis set approach. A hierarchy of well defined levels of approximation is introduced, differing from the exact theory by the neglect of terms involving matrix elements over the Fock operator. The most accurate method is denoted as MP2-F12/3B. This assumes only that Fock matrix elements between occupied orbitals and orbitals outside the auxiliary basis set are negligible. For the chosen ansatz for the first-order wave function this is exact if the auxiliary basis is complete. In the next lower approximation it is assumed that the occupied orbital space is closed under action of the Fock operator [generalized Brillouin condition (GBC)]; this is equivalent to approximation 2B of Klopper and Samson [J. Chem. Phys. 116, 6397 (2002)]. Further approximations can be introduced by assuming the extended Brillouin condition (EBC) or by neglecting certain terms involving the exchange operator. A new approximation MP2-F12/3C, which is closely related to the MP2-R12/C method recently proposed by Kedzuch et al. [Int. J. Quantum Chem. 105, 929 (2005)] is described. In the limit of a complete RI basis this method is equivalent to MP2-F12/3B. The effect of the various approximations (GBC, EBC, and exchange) is tested by studying the convergence of the correlation energies with respect to the atomic orbital and auxiliary basis sets for 21 molecules. The accuracy of relative energies is demonstrated for 16 chemical reactions. Approximation 3C is found to perform equally well as the computationally more demanding approximation 3B. The reaction energies obtained with smaller basis sets are found to be most accurate if the orbital-variant diagonal Ansatz combined with localized orbitals is used for the first-order wave function. This unexpected result is attributed to geminal basis set superposition errors present in the formally more rigorous orbital invariant methods.  相似文献   

20.
A method for basis set generation for SCF calculations is proposed. Using SCF orbitals and orbital energies obtained in the extended basis set the Fock operator can be expressed as its spectral resolution. The sum of differences between occupied orbital energies and corresponding eigenvalues obtained by the diagonalization of this operator in the new smaller basis set is a criterion of the quality of this new set. The present method consists of the minimization of this sum by changing the parameters that determine the new basis functions. An example of the optimization of the different Gaussian basis sets for the LiH molecule is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号