首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The novel alkynyldithiocarboxylate complexes [Fe(η5-C5H5)(S2CCCR) (dppm-P)] (3a,b) and [Fe(η5-C5H5)(S2CCCR)(PPh3)] (4a,b) were obtained through the insertion of CS2 into the iron-akynyl bond in the complexes [Fe(η5-C5H5)(CCR)(L)(L′] L, L′ = dppm R = Ph (1a), tBu(1b); L = (CO), L′ = (PPh3) R = Ph (2a), tBu (2b). Variable-temperature 31P{1H} NMR studies indicate the presence of two different isomers, [Fe(η5-C5H5)(η3-S,C,S′---S2CCCR)(L)(L′)] and [Fe(η5-C5H52-S,S′-S2CCCR)(L)(L′)], which rapidly interconvert at room temperature. The synthesis of the precursor complex [Fe(η5-C5H5)(CCtBu)(CO)(PPh3)] is also described.  相似文献   

2.
The strong π-acid ligand Ph2PN(iBu)PPh2 reacts with Co2(CO)S (1:1) to give Co2[μ-Ph2PN(iBu)PPh2] (μ-CO)2(CO)4 (1); however, when the ratio is 2:1 a novel species [Co{Ph2PN(iBu)PPh2-P,P′}2(CO)][Co(CO)4] (2) has been obtained. Crystal data for 2: Mr = 1140.83; triclinic, space group P , a = 12.330(2), b = 13.340(2), c = 18.122(3) Å, = 86.63(1), β = 80.75(1), γ = 84.24(1)°, V = 2924 Å3, Z = 2; R = 0.060 for 3711 reflections having I 3σ(I). The results of X-ray diffraction, ESR, variable-temperature magnetic susceptibility, conductivity, and XPS analysis support that the species 2 is a d9-d9 cage molecule-pair. The mechanism for the formation of the species 2 has been investigated initially by 31P NMR.  相似文献   

3.
Recent results (post-1990) on the synthesis and structures of bis(trimethylsilyl)methyls M(CHR2)m (R = SiMe3) of metals and metalloids M are described, including those of the crystalline lipophilic [Na(μ-CHR2)], [Rb(μ-CHR2)(PMDETA)]2, K4(CHR2)4(PMDETA)2, [Mg(CHR2)(μ-CHR2)], P(CHR2)2 (gaseous) and P2(CHR2)4, [Yb(CHR2)2(OEt2)2] and [{Yb(CR3)(μ-OEt)(OEt2)}2]; earlier information on other M(CHR2)m complexes and some of their adducts is tabulated. Treatment of M(CHR2) (M = Li or K) with four different nitriles gave the X-ray-characterized azaallyls or β-diketinimates , and (LL′ = N(R)C(tBu)CHR, L′L′ = N(R)C(Ph)C(H)C(Ph)NR, LL″ = N(R)C(Ph)NC(H)C(Ph)CHR, R = SiMe3 and Ar = C6H3Me2-2,5). The two lithium reagents were convenient sources of other metal azaallyls or β-diketinimates, including those of K, Co(II), Zr(IV), Sn(IV), Yb(II), Hf(IV) and U(VI)/U(III). Complexes having one or more of the bulky ligands [LL′], [L′L′], [LL], [LL″], [L″L], [LL] and [{N(R)C(tBu)CH}2C6H4-2]2− are described and characterized (LL = N(H)C(Ph)C(H)C(Ph)NH, L″L = N(R)C(tBu)C(H)C(Ph)NR, LL = N(R)C(tBu)CHPh). Among the features of interest are (i) the contrasting tetrahedral or square-planar geometry for and , respectively, and (ii) olefin-polymerization catalytic activity of some of the zirconium(IV) chlorides.  相似文献   

4.
Reductive dehalogenation of the (chloro)(phenylethynyl)phosphine (2,4,6-tBu3C6H2O)(PhCC)PCl, I, by Co2(CO)8, II, yields the neutral phosphenium ion complex [(R)(R′)]P=Co(CO)3, III, (R = 2,4,6-tBu3C6H2O; R′ = (η2-C≡CPh)Co2(CO)6), which contains a trigonally planar coordinated phosphorus atom. When NaCo(CO)4, V, is used instead of II a dinuclear complex, Co2(CO)62-P(R)(R′)]2, VI, (R = 2,4,6-tBu3C6H2O; R′ = C≡CPh) is formed in which the phosphido ligands P(R)(R′), bridge in a μ2 fashion two Co(CO)3 units. The mechanism of formation of VI, involving a formal dimerization of two [(2,4,6-tBu3C6H2O)(PhC≡C)]P=Co(CO)3 fragments, is discussed. However, (tBu)(PhC≡C)PCl, VII, reacts with II, to yield the cluster compound VIII, containing the two μ2-bridging units (tBu)[(η2-C≡CPh)Co2(CO)5]P and (tBu)(PhC≡C)P.

Compounds II and VI–VIII were identified from their analytical and spectroscopic (IR, 1H-, 13C- and 31P-NMR) data. The molecular structure of the cluster compound VIII was determined by an X-ray diffraction study.  相似文献   


5.
Reaction of optically active ketone complexes (+)-(R)-[(η5-C5H5)Re(NO)-(PPh3)(η1-O=C(R)(CH3)]+ BF4 (R = CH2CH3, CH(CH3)2m C(CH3)3, C6H5) with K(s-C4H9)3BH gives alkoxide complexes (+)-(RS)-(η5-C5H5)Re(NO)(PPh3)-(OCH(R)CH3) (73–90%) in 80–98% de. The alkoxide ligand is then converted to Mosher esters (93–99%) of 79–98% de.  相似文献   

6.
The complexes [(η6-arene)Ru=C(OMe)CH2R′)Cl(PR3)]PF6 (R′ = Ph; ARENE = Me4C6H2, iPr3C6H3, Et3C6H3; PR3 = PMe3, PPh3, P(OMe)3) have been made from RuCl2(PR3)(arene) precursors by activation at room temperature of phenylacetylene in methanol containing NaPF6. The complex with R′ = nBu, ARENE = Me4C6H2, and PR3 = PMe3 is similarly formed from hex-1-yne but much more slowly, and a complex of the type [(p-cymene)Ru=C(OMe)CH2R′)Cl(PR3)]+PF6 could be obtained only when the phosphine was the bulky PPh3 (10b). It has been shown that the steric hindrance by both arene and phosphine ligands contributes to the stabilization of the carbeneruthenium complexes.  相似文献   

7.
The successive reaction of chromium and tungsten hexacarbonyl, (CO)6M (M = Cr, W), with [N=C(Ph)R] and [Et3O]BF4 yields the alkylideneamino(ethoxy)carbene complexes (CO)5M[C(OEt)N=C(Ph)R] (M = Cr (1), W (2); R = NMe2 (a), tBu (b)). Ethoxide abstraction from 1 and 2 affords 2-azoniaallenylidene complexes, {(CO)5M[CNC(Ph)R]}+BF4 (3/4). The complexes 3 and 4 are best described as resonance hybrids of several limiting structures. On the basis of the spectroscopic data of the complexes 3a and 4a the limiting structure of an iminium-substituted isocyanide complex dominates.  相似文献   

8.
The reaction of [(CO)PPh3)2Re(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)] (2) with HBF4-Me2O generates [(CO)PPh3)2Re(μ- H)2(μ,η12HNCHPh)Ru(PPh3)2(PhCN)][BF4] (3). Monitoring the reaction by NMR spectroscopy shows the intermediate formation of [(CO)(PPh3)2 HRe(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)][BF4] (4). Attempted reduction of the imine ligand by a nucleophile (H or CN) failed, regenerating 2. Under dihydrogen at 50 atm, 3 is slowly transformed into [(CO)(PPh3)2HRe(μ-H)3Ru(PPh3)2(PhCN)][BF4] (5) with liberation of benzyl amine.  相似文献   

9.
The butadienyl complexes formed by the reaction of trans-(R1)CH=CHCCR2 (R1, R2 = SiMe3, tBu, Me, Et) with RuCl(CO)H(PPh3)3 exhibit unique structures: instead of taking the 18-electron configuration of the metal by conventional η3-coordination of the butadienyl ligand, they shift significantly to the 16-electron η1-coordination state.  相似文献   

10.
The acid–base chemistry of some ruthenium ethyne-1,2-diyl complexes, [{Ru(CO)2(η-C5H4R)}22-CC)] (R=H, Me) has been investigated. Initial protonation of [{Ru(CO)2{η-C5H4R}}22-CC)] gave the unexpected complex cation, crystallised as the BF4 salt, [{Ru(CO)2(η-C5H4R}}33-CC)][BF4] (R=Me structurally characterised). This synthesis proved to be unreliable but subsequent, careful protonation experiments gave excellent yields of the protonated ethyne-1,2-diyl complexes, [{Ru(CO)2{η-C5H4R)}2212-CCH)](BF4) (R=Me structurally characterised) which could be deprotonated in high yield to return the starting ethyne-1,2-diyl complexes.  相似文献   

11.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

12.
Novel isonitrile derivatives of a diruthenium carbonyl complex, (μ235-guaiazulene)Ru2(CO)5 (2), were synthesized by substitution of a CO ligand by an isonitrile, and were subjected to studies on thermal and photochemical haptotropic interconversion. Treatment of 2 (a 45:55 mixture of two haptotropic isomers, 2-A and 2-B) with RNC at room temperature resulted in coordination of RNC and alternation of the coordination mode of the guaiazulene ligand to form (μ215-guaiazulene)Ru2(CO)5(CNR), 5d–5f, [5d; R=tBu, 5e; 2,4,6-Me3C6H2, or 5f; 2,6-iPr2C6H3] in moderate to good yields. Thermal dissociation of a CO ligand from 5 at 60 °C resulted in quantitative formation of a desirable isonitrile analogue of 2, (μ235-guaiazulene)Ru2(CO)4(CNR), 4d–4f, [4d; R=tBu, 4e; 2,4,6-Me3C6H2, or 4f; 2,6-iPr2C6H3], as a 1:1 mixture of the two haptotropic isomers. A direct synthetic route from 2 to 4d–4f was alternatively discovered; treatment of 2 with one equivalent of RNC at 60 °C gave 4d–4f in moderate yields. All of the new compounds were characterized by spectroscopy, and structures of 5d (R=tBu) and 4d-A (R=tBu) were determined by crystallography. Thermal and photochemical interconversion between the two haptotropic isomers of 4d–4f revealed that the isomer ratios in the thermal equilibrium and in the photostatic state were in the range of 48:52–54:46.  相似文献   

13.
The study of the reactivity of [Pt2M4(CCR)8] (M=Ag or cu; R=Ph or tBu) towards different neutral and anionic ligands is reported. This study reveals that reactions of the phenylacetylide derivatives [Pt2M4(CCPh)8] with anionic, X (X=Cl or Br) or neutral donors (CNtBu or py) in a molar ratio 1:4 (m/donor ratio 1:1) yield the trinuclear anionic (NBu4)2[{Pt(CCPh)4 (MX)2] (M=Ag or Cu, X =Cl or Br) or neutral [{Pt(CCPh04=sAGL)2] (L=CNtBu or py) complexes, respectively. The crystal structure of (NBu4)2[{Pt(CCPh)4}(CuBr)2](4) shows that the anion is formed by a dianionic Pt(CCPh)4 fragment and two neutral CuBr units joined through bridging alkynyl ligands. All the alkynyl groups are σ bonded to Pt and η2-coordinated to a Cu atom which have an approximately trigonal-planar geometry. By contrast, similar reactions with [Pt2M4(CCtBu)8] (molar ratio M/donor 1:1) afford hexanuclear dianionic (NBu4)2[Pt2M4(CCtBu)8X2] or neutral [Pt2Ag4(CCtBu08Py2]. Only by treatment with a large exces of Br (molar ratio M/Br 1:2) are the trinuclear complexes (NBu4)2[{Pt(CCtBu4 (MBr)2] (M=Ag, Cu) obtained. Attempted preparations of analogous complexes with phosphines (L′=PPh3 or PEt3) by reactions of [Pt2M4(CCR8] with L′ leads to displacement of alkynyl ligands from platinum and formation of neutral mononuclear complexes [trans-Pt(CCR)2L′2].  相似文献   

14.
Molecular mechanics (MM2) calculations were performed on 54 conformations of 18 phosphines (PH3; PH3−nRn, where n = 1,…3, and R = Me and Et, n = 1 or 2 and R =iPr, and n = 1 and R =tBu, PMe2Et, PMeEt2, and PPhMe2, and PPh2R where R = Me, Et, iPr, tBu and Ph). The results are compared to those previously obtained from MINDO/3 and MNDO calculations, and to experimental data. Single conformer cone angles and weighted average cone angles were calculated from MM2 optimized geometries employing Tolman's general definition, and they are compared to Tolman's values, MINDO/3 results, and T.L. Brown's ER values. Of the cone angle definitions used, the weighted average values are suggested as the best single representation of phosphine ligand sizes. The steric parameters (cone angle and ER values) alone, and in conjunction with electronic parameters, are correlated with experimental data.  相似文献   

15.
Two organogold derivatives of diphenylmethane and diphenylethane, Ph3PAu(o-C6H4)CH2(C6H4-o)AuPPh3 (1) and Ph3PAu(o-C6H4)(CH2)2(C6H4-o)AuPPh3 (2), have been synthesized by the reaction of ClAuPPh3 with Li(o-C6H4)CH2(C6H4-o)Li and Li(o-C6H4)(CH2)2(C6H4-o)Li respectively. The interaction of 1 with dppe results in the replacement of the two PPh3 groups to give a macrocyclic compound (3) that includes an Au Au bond. Compounds 1 and 2 react with one or two equivalents of [Ph3PAu]BF4 to form new types of cationic complex [CH2(C6H4-o)2(AuPPh3)3]BF4 (4), [CH2(C6H4-o)2(AuPPh3)4](BF4)2 (5), and [(CH2)2(C6H4-o)2(AuPPh3)4](BF4)2 (6). Complexes 1–6 have been characterized by X-ray diffraction studies, FAB MS, and IR as well as by 1H and 31P NMR spectroscopy. A complicated system of Au H-C agostic interactions, involving the bridging alkyl groups (—CH2— and CH2-CH2—) of diphenylmethane and diphenylethane ligands, has been found to occur in complexes 1–3 and 6.  相似文献   

16.
The reaction of [Nb(η5-C5H4R)2X2] [1: R = SiMe3, X = Cl; 2: R = SiMe3, X = Br; 3: R = H, X = Cl; 4: R =t, X = Cl] with nitroso derivatives ArNO [a: Ar = Ph; b: Ar = o-CH3-C3H4; c: Ar = p-(CH3)2NC6H4] yields paramagnetic complexes formulated as [Nb(η5-C5H4R)(η3-C5H4R)X2(ArNO-N,O) 1a, 1b, 1c, 2a, 3a, 4a and 4c, which have been characterized by ESR and IR spectroscopy.  相似文献   

17.
The photochemical reactions of the title complexes were studied in air-free benzene solution. In both cases photolysis leads to the production of complexes of the formula (η5-C5H5)M(PPh3)2. Both reactions are the result of the initial loss of a methyl radical from the excited state. The primary photoproduct, (η5-C5H5)MPPh3 (M=CO, Ni), then scavenges neutral ligands from the solution to yield, in the case of PPh3, (η5-C5H5)M(PPh3)2. In the absence of uncoordinated ligand in the reaction solution, the cobalt derivative reacts with the starting material to yield (η5-C5H5)Co(PPh3)2, a methyl radical and (η5-C5H5)Co(solvent)n.  相似文献   

18.
The nucleophilicity of the bridging atom of the selenium complex (μ-Se)[(η5-C5H5)Fe(CO)2]2 (1) has been demonstrated by addition of the complex cation [(η5-C5H5)Fe(CO)2]+: Reaction of 1 with the ionic complex [(η5-C5H5)Fe(CO)2-(THF)][BF4] cleanly yields the ionic trinuclear complex [(μ3-Se)(η5-C5H5)-Fe(CO)23][BF4] (3). This addition reaction converts the bridging selenium atom from a bent FeSeFe structure into a flattened Fe3Se pyramid (X-ray diffraction studies), without significant changes in the iron-selenium bond lengths (244.9(<1) pm and 242.7(1)/243.3(1)/244.8(1) pm, respectively). These bonds are considered to be single bonds in accord with the EAN rule.  相似文献   

19.
The compounds C5H5Co(η2-CH3CHS)PMe3 (I) and C5H5Co(η2-CH3CHSe)PMe3 (II) are prepared from C5H5Co(CO)PMe3, CH3CHBr2 and NaSH or NaSeH, respectively. The synthesis of the corresponding rhodium complexes C5H5Rh(η2-CH3CHS)P(i-Pr)3 (VI) and C5H5Rh(η2-CH3CHSe)P(i-Pr)3 (VII) has been achieved through hydrogenation of C5H5Rh(η2-EC=CH2)P(i-Pr)3 (E = S, Se), using RhCl(PPh3)3 as a catalyst. The crystal structure of VII has been determined.  相似文献   

20.
Reaction of trans-[ReCl(CNR)(dppe)2] (R = Me (Ia) or tBu (Ib); DPPE = Ph2PCH2CH2PPh2) in CH2Cl2 with cynamide in the presence of TlBF4 forms the new cynamide-isocyanide complexes trans-[Re(CNR)(NCNH2)(dppe)2][BF4] (R = Me (IIa) or tBu (IIb)), which upon treatment by tBuOK or Et3N give trans-[Re(NCNH)(CNR)(dppe)2] (R = Me (IIIa) or tBu (IIIb)). The electrochemical behaviour of these species was studied by cyclic voltammetry and controlled potential electrolysis at a Pt electrode in an aprotic solvent, and cathodic reduction of II results in the formation of III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号