首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A poly-amidosulfonic acid and multi-wall carbon nanotubes composite (PASA/MWNTs) modified electrode has been constructed by electropolymerization on glassy carbon electrode (GCE). The electrochemical behaviors of hydroquinone (HQ) and catechol (CC) were investigated using cyclic and differential pulse voltammetries (DPVs) at the prepared electrode. Separation of the reductive peak potentials for HQ and CC was about 120 mV in pH 6.0 phosphate buffer solution (PBS), which makes it suitable for simultaneous determination of these compounds. In the presence of 1.0 × 10−4 mol L−1 isomer, the reductive peak currents of DPV are proportional to the concentration of HQ in the range of 6.0 × 10−6 to 4.0 × 10−4 mol L−1, and to that of CC in the range of 6.0 × 10−6 to 7.0 × 10−4 mol L−1. When simultaneously changing the concentration of both HQ and CC, the linear concentration range of HQ (or CC) is 6.0 × 10−6 to 1.0 × 10−4 mol L−1 (or 6.0 × 10−6 to 1.8 × 10−4 mol L−1), and the corresponding detection limits are 1.0 × 10−6 mol L−1. The proposed method has been applied to simultaneous determination of HQ and catechol in water sample, and the results are satisfactory.  相似文献   

2.
Herein, a novel electrochemical method was developed for the determination of tryptophan based on the poly(4-aminobenzoic acid) film modified glassy carbon electrode (GCE). The electrochemical behaviors of tryptophan at the modified electrode were investigated. It was found that the oxidation peak current of tryptophan at the modified GCE was greatly improved compared with that at the bare GCE. The effects of supporting electrolyte, pH value, scan rate, accumulation potential and time were examined. The oxidation peak current of tryptophan was proportional to its concentration over the range from 1.0 × 10−6 to 1.0 × 10−4 mol L−1. The limit of detection was evaluated to be 2.0 × 10−7 mol L−1. The proposed method was sensitive and simple. It was successfully employed to determine tryptophan in pharmaceutical samples.  相似文献   

3.
This paper reports a poly-Nile Blue (PNB) sensing film based electrochemical sensor and the application in food analysis as a possible alternative for electrochemical detection of nitrite. The PNB-modified electrode in the sensor was prepared by in situ electropolymerization of Nile Blue at a prepolarized glassy carbon (GC) electrode and then characterized by cyclic voltammetry (CV) and pulse voltammetry in phosphate buffer (pH 7.1). Several key operational parameters affecting the electrochemical response of PNB sensing film were examined and optimized, such as polarization time, PNB film thickness and electrolyte pH values. As the electroactive PNB sensing film provides plenty of active sites for anodic oxidation of nitrite, the nitrite sensor exhibited high performance including high sensitivity, low detection limit, simple operation and good stability at the optimized conditions. The nitrite sensor revealed good linear behavior in the concentration range from 5.0 × 10−7 mol L−1 to 1.0 × 10−4 mol L−1 for the quantitative analysis of nitrite anion with a limit of detection of 1.0 × 10−7 mol L−1. Finally, the application in food analysis using sausage as testing samples was investigated and the results were consistent with those obtained by standard spectrophotometric method.  相似文献   

4.
Gold nanorods (GNRs) with suitable aspect ratio were synthesized with a template technique and then dispersed in a saturated sodium citrate solution by ultrasonication to form a GNR suspension. A GNR-modified electrode was fabricated using the GNR suspension. The oxidation of dopamine at the GNR/GC electrode exhibited surprisingly high electrocatalytic activity and adsorption-controlled characteristics. Square-wave voltammetry was used to detect dopamine. At the GNR/GC electrode, the linear concentration range of DA is from 1 × 10−8 M to 1 × 10−7 M and the detection limit (s/n = 3) is as low as 5.5 × 10−9 M. The current sensitivity is 3.280 μA/μM, and 1000-fold ascorbic acid (AA) cannot interfere with the determination of DA. All these performances are greatly superior to those of the bare GC electrode.  相似文献   

5.
A novel hybrid bifunctional sensing platform for simultaneous determination of NO and O2 has been developed, whereby hematite nanotubes are immobilized into the chitosan matrix onto a gold electrode (labeled as HeNTs-Chi/Au). The HeNTs distributed in porous-structured chitosan matrix not only offer abundant active sites for bifunctional sensing of NO and O2, but also facilitate oxidation of NO and reduction of O2 dramatically. Straight calibration curves are achieved in analyte concentration ranges of 5.0 × 10−8 to 1.25 × 10−6 mol L−1 for NO and 2.5 × 10−7 to 6.0 × 10−6 mol L−1 for O2. Also, the detection limits are low of 8.0 × 10−9 mol L−1 for NO and 5.0 × 10−8 mol L−1 for O2. Such an efficient bifunctional sensor for NO and O2 offers great potential in quantitation of NO levels in biological and medical systems, since NO level is highly regulated by various reactive oxygen species.  相似文献   

6.
Heterogeneous electrocatalytic reduction of hydrogen peroxide (H2O2) by C60 is reported for the first time. C60 is embedded in tetraoctylammonium bromide (TOAB) film and is characterized by scanning electron microscopy and cyclic voltammetry. Electrocatalytic studies show that the trianion of C60 mediates the electrocatalytic reduction of H2O2 in aqueous solution containing 0.1 M KCl. Application of such film modified electrode as an amperometric sensor for H2O2 determination is also examined. The sensor shows a fast response within 1 s and a linear response is obtained (R = 0.9986) in the concentration range from 3.33 × 10−5 to 2.05 × 10−3 mol L−1 for H2O2, with the detection limit of 2 × 10−5 mol L−1 and the sensitivity of 1.65 μA mM−1. A good repeatability and stability is shown for the sensor during the experiment.  相似文献   

7.
A new approach for decreasing the detection limit for a copper(II) ion-selective electrode (ISE) is presented. The ISE is designed using salicylidine-functionalized polysiloxane in carbon paste. This work describes the attempts to develop the electrode and measurements of its characteristics. The new type of renewable three-dimensional chemically modified electrode could be used in a pH range of 2.3–5.4, and its detection limit is 2.7 × 10−8 mol L−1 (1.2 μg L−1). This sensor exhibits a good Nernstian slope of 29.4 ± 0.5 mV/decade in a wide linear concentration range of 2.3 × 10−7 to 1.0 × 10−3 mol L−1 of Cu(II). It has a short response time (8 s) and noticeably high selectivity over other Cu(II) selective electrodes. Finally, it was satisfactorily used as an indicator electrode in complexometric titration with EDTA and determination of copper(II) in miscellaneous samples such as urine and various water samples.  相似文献   

8.
A glassy carbon electrode (GCE) was modified with electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin (TAPP) in acetonitrile by cyclic voltammetry (CV). The voltammetric behavior of norepinephrine (NE) in the presence of excess ascorbic acid (AA) was investigated at the modified electrode by cyclic and square wave voltammetry (SWV) in phosphate buffer solution. The modified electrode gave higher selectivity and highly effective electroactivity to NE oxidation in voltammetric measurements of NE in the presence of AA and epinephrine. In pH 7.4 phosphate buffer solution, the peak current increased linearly with the concentration of NE in two concentration ranges of 1.0×10−6 to 5.0×10−5 mol dm−3.  相似文献   

9.
Abbas MN  Radwan AA 《Talanta》2008,74(5):1113-1121
A potentiometric lipoate-selective sensor based on mercuric lipoate ion-pair as a membrane carrier is reported. The electrode was prepared by coating the membrane solution containing PVC, plasticizer, and carrier on the surface of graphite electrode. Influences of the membrane composition, pH, and possible interfering anions were investigated on the response properties of the electrode. The sensor exhibits significantly enhanced response toward lipoate ions over the concentration range 1 × 10−7 mol L−1 to 1 × 10−2 mol L−1 with a lower detection limit of (LDL) of 9 × 10−8 mol L−1 and a slope of −29.4 mV decade−1, with S.D. of the slope is 0.214 mV. Fast and stable response, good reproducibility, long-term stability, applicability over a pH range of 8.0–9.5 is demonstrated. The sensor has a response time of ≤12 s and can be used for at least 6 weeks without any considerable divergence in its potential response. The proposed electrode shows good discrimination of lipoate from several inorganic and organic anions. The CGE was used in flow injection potentiometry (FIP) and resulted in well defined peaks for lipoate ions with stable baseline, excellent reproducibility and reasonable sampling rate of 30 injections per hour. The proposed sensor has been applied for the direct and FI potentiometric determination of LA in pharmaceutical preparations and urine; and has been also utilized as an indicator electrode for the potentiometric titration of LA.  相似文献   

10.
The preparation and electrochemical characterization of a carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) as well as its behavior as electrocatalyst toward the oxidation of N-acetylcysteine were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of N-acetylcysteine were explored using sweep linear voltammetry. The best voltammetric response was observed for a paste composition of 20% (w/w) copper(II) hexacyanoferrate(III) complex, acetate buffer solution at pH of 6.0 as the electrolyte and scan rate of 10 mV s− 1. A linear voltammetric response for N-acetylcysteine was obtained in the concentration range from 1.2 × 10− 4 to 8.3 × 10− 4 mol L− 1, with a detection limit of 6.3 × 10− 5 mol L− 1. The proposed electrode is useful for the quality control and routine analysis of N-acetylcysteine in pharmaceutical formulations.  相似文献   

11.
A novel method for fabricating a nanoarray electrode combining the template technique with the self-assembled approach was developed. The glassy carbon electrode was modified with the Au nanoarray using micropores of aluminum anodic film as template. Then, the Au nanoarray electrode was self-assembled with L-cysteine (L-Cys) and gold colloid, respectively. In order to evaluate the electrochemical characteristics of L-Cys–Au colloid self-assembled nanoarray electrode, was chosen as molecule probe and cyclic voltammetry was used. In addition, the functional nanoarray electrode was applied to measuring dopamine (DA). The resulting L-Cys–Au colloid self-assembled nanoarray electrode demonstrated that the linear calibration range extended over three orders of magnitude of DA concentrations (1.0 × 10−9–1.0 × 10−6 mol/L) and the detection limit was 5.0 × 10−10 mol/L.  相似文献   

12.
CuS nanotubes (NTs) made up of nanoparticles were successfully prepared in large quantities in an O/W microemulsion system under low temperature. Based on the characteristics of synchronous fluorescence spectroscopy (SFS), a new method with high sensitivity and selectivity was developed for rapid determination of silver ion with functional copper sulphide (CuS) nanotubes as a fluorescence probe. Under optimal conditions, functional copper sulphide displayed a calibration response for silver ion over a wide concentration range from 1.0 × 10−10 to 1.0 × 10−8 mol L−1. The limit of detection was 0.5 × 10−10 mol L−1 and the relative standard deviation of eight replicate measurements for the highest concentration (1 × 10−8 mol L−1) was 3%. Compared with several fluorescence methods, the proposed method had a wider linear range and improved the sensitivity. Furthermore, the concentration dependence of the synchronous fluorescence intensity is effectively described by a Langmuir-type binding isotherm.  相似文献   

13.
A mesoporous TiO2 was synthesized according to the reported method, and then used to modify the carbon paste electrode (CPE). The electrochemical behavior of hypoxanthine was investigated with great detail. Compared with the unmodified CPE, the mesoporous TiO2-modified CPE greatly enhances the oxidation signal of hypoxanthine. Due to huge surface area, well-defined and special mesopores, the mesoporous TiO2-modified CPE shows considerable enhancement effect toward hypoxanthine. Based on this, a sensitive, rapid and convenient electrochemical method was developed for the determination of hypoxanthine. The linear range is over the range from 2.0 × 10−7 to 5.0 × 10−5 mol L−1, and the limit of detection is estimated to be 5.0 × 10−8 mol L−1. The relative standard deviation (RSD) for 10 mesoporous TiO2-modified CPEs is 5.7%. Finally, this sensing method was successfully used to determine hypoxanthine in human blood serum samples.  相似文献   

14.
The electrochemical behavior of L-tyrosine was investigated at a multi-wall carbon nanotubes modified glassy carbon electrode. L-tyrosine itself showed a poor electrochemical response at the bare glassy carbon electrode; however, a multi-wall carbon nanotubes film fabricated on the glassy carbon electrode can directly enhance the electrochemical signal of L-tyrosine when applying cyclic voltammetry and square wave stripping voltammetry without any mediator. Cyclic voltammetry was carried out to study the electrochemical oxidation mechanism of L-tyrosine, which shows a totally irreversible process and an oxidation potential of 671 mV at the modified electrode and 728 mV at the bare electrode, ΔEp = 57 mV. The anodic peak current linearly increases with the square root of scan rate in the low range, suggesting that the oxidation of L-tyrosine on the multi-wall carbon nanotubes modified electrode is a diffusion-controlled process. The square wave stripping voltammetry currents of L-tyrosine at the multi-wall carbon nanotubes modified electrodes increased linearly with the concentration in the range of 2.0 × 10−6–5.0 × 10−4 mol L−1. The detection limit was 4.0 × 10−7 mol L−1. The method is simple, quick, sensitive and accurate.  相似文献   

15.
In this study, two quantitative differential-pulse polarography (DPP) and square-wave voltammetry (SWV) methods were developed to determine total chlorogenic acid (CGA). Studies on this compound involve its reduction at a hanging mercury drop electrode in micellar media—a simple, fast, reliable, and sensitive method. The use of surfactant cationic cetyltrimethylammonium bromide (CTAB) was pivotal to the development of these methods, allowing for satisfactory changes in CGA reduction. The supporting electrolyte which provided the best-defined CGA determination was 0.04-mol L−1 phosphate buffer at pH 6.0 in the presence of CTAB. Based on this use and under optimized conditions, the two new DPP and SWV methods for CGA analysis had detection limits of 2.36 × 10−7 and 1.34 × 10−9 mol L−1, respectively, for a pure standard. Analysis of the standard in the presence of treated instant coffee and mate tea samples allowed for good average recovery rates, ranging from 97.06% to 105.90%.  相似文献   

16.
The insoluble multi-walled carbon nanotubes (MWNT) was successfully dispersed into water in the presence of hydrophobic surfactant. After that, MWNT film-coated glassy carbon electrode (GCE) was achieved via dip-coating and evaporating water. Owing to huge surface area, high sorption capacity and subtle electronic properties, MWNT film exhibits highly efficient accumulation efficiency as well as considerable surface enhancement effects to Sunset Yellow and Tartrazine. As a result, the oxidation peak currents of Sunset Yellow and Tartrazine remarkably increase at the MWNT film-modified GCE. Based on this, a novel electrochemical method was developed for the simultaneous determination of Sunset Yellow and Tartrazine. The limits of detection are 10.0 ng mL−1 (2.2 × 10−8 mol L−1) and 0.1 μg mL−1 (1.88 × 10−7 mol L−1) for Sunset Yellow and Tartrazine. Finally, the proposed method was successfully used to detect Sunset Yellow and Tartrazine in soft drinks.  相似文献   

17.
The gold electrode self-assembled with the homocysteine monolayer (Hcy/Au) is demonstrated to catalyze the electrochemical response of dopamine (DA) by cyclic voltammetry. A pair of well-defined redox waves was obtained and the calculated standard rate constant (ks) is 2.1×10−2 cm/s at the self-assembled electrode. The reduction peak of DA can be used to determine the concentration of DA in presence of ascorbic acid (AA) owing to the Hcy/Au also catalyzing the electrochemical oxidation of AA.  相似文献   

18.
A new, rapid, sensitive, non-extraction batch, and flow injection spectrophotometric method for the determination of cationic surfactants (CSs) such as cetyltrimethyl ammonium bromide (CTAB), tetra-n-butyl ammonium chloride (TBAC) and cetylpyridinium chloride (CPC) is proposed. The method is based on the interaction of cationic surfactants with eriochrome black-T to form an ion-association complex. This complex has strong absorbance at 708 nm. The effects of chemical parameters and FIA variables on the determination of cationic surfactants were studied in detail, especially for CTAB. Under optimum conditions, the two linear calibration ranges of the method are 3.0 × 10−6 to 5.0 × 10−3 mol L−1 CTAB, CPB and DTAB for the batch spectrophotometric method and 2.0 × 10−6 to 2.0 × 10−4 mol L−1 CTAB, CPB and TBC for the flow injection spectrophotometric method. The sample throughput was 35 ± 5 samples h−1 at room temperature. The relative standard deviations for 10 replicates of analysis of (2.0, 0.6 and 0.2) × 10−4 mol L−1 CTAB were 1.2, 1.3, and 0.8%, respectively. In addition, the influence of potential interfering substances on the determination of cationic surfactants was studied. The proposed method is simple and rapid, using no toxic organic solvents. It was applied to the determination of trace CS in industrial wastewater with satisfactory results.  相似文献   

19.
The electrocatalytic oxidation of ascorbate on a ruthenium oxide hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated at pH 6.9 by using rotating disc electrode (RDE) voltammetry. The influence of the systematic variation of rotation rate, film thickness, ascorbate concentration and the electrode potential indicated that the rate of cross-chemical reaction between Ru(III) centres immobilized into the film and ascorbate controls the overall process. The kinetic regime may be classified as a Sk″ mechanism and the second order rate constant for the surface electrocatalytic reaction was found to be 1.56 × 10−3 mol−1 L1 s−1 cm. A carbon fibre microelectrode modified with the RuOHCF film was successfully used as an amperometric sensor to monitor the ascorbate diffusion in a simulated microenvironment experiment.  相似文献   

20.
Sun X  Xia K  Liu B 《Talanta》2008,76(4):747-751
This paper details the fabrication of indole (ID) self-assembled multilayers (SAMs) and fluorescence interfacial sensing for organophosphorus (OP) pesticides. Quartz/APES/AuNP/l-Cys/ID film was constructed on l-cysteine modified Quartz/APES/AuNP surface via electrostatic attraction between ID and l-cysteine. Cyclic voltammetry indicates that ID is immobilized successfully on the gold surface. Fluorescence of the Quartz/APES/AuNP/l-Cys/ID film shows sensitive response toward OPs. The fluorescent sensing conditions of the SAMs are optimized that allow linear fluorescence response for methylparathion and monocrotophos over 5.97 × 10−7 to 3.51 × 10−6 g L−1 and 3.98 × 10−6 to 3.47 × 10−5 g L−1, with detection limit of 6.1 × 10−8 gL−1 and 3.28 × 10−6 gL−1, respectively. Compared to bulk phase detection, interfacial fluorescence sensing based on the SAMs technology shows higher sensitivity by at least 2 order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号