首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of sheath in plasma contaminated with varying dust charges under the effect of an external magnetic field is studied. Study of Sagdeev potential through pseudoptential approach has been attempted with a view to deriving the sheath equation. Numerical analysis has been carried out to study the potential variation with sheath-ward distance for various plasma parameters. A unique finding of the study is that the presence of dust particles as well as the magnetic field drastically modifies the Bohm sheath criterion for plasma sheath formation as obtained earlier in unmagnetised two-component plasma. The results have more realistic interpretation in showing explicitly the interaction of magnetic field and impurity caused by dust charge variation, with the possibility of its impact in various technological applications including plasma-material interaction, material processing and electro-mechanical devices.  相似文献   

2.
We have reported a theoretical study on the interaction mechanism between dust particles in the presence of asymmetric ion flow and an external magnetic field in complex plasma. The recent experimental and numerical results on the particle-wake interaction ensures the dominance of the wake effect in the subsonic regime of plasma flow using the cold ion approximation. The recent developments in dusty plasma research and its growing interest towards more realistic magnetized dusty plasma scenarios also demand serious attention to study the wake effect both in the sub and supersonic regimes in the presence of a magnetic field. It is a challenging task to develop a correct, quantitative theory of wake potential for different regimes of magnetic field and ion flow velocity. Analytic expressions for the wake potential have been reported in this paper for both subsonic and supersonic regimes in the presence of an external magnetic field along with Debye-Hückel type potentials. The results show that the wake potential plays a dominant role in the subsonic regime and its strength increases with an increase in magnetic field. The behaviour of the wake potential is found to have an interesting effect on the Coulomb crystallization of dust grains and is studied with the help of molecular dynamic (MD) simulation.  相似文献   

3.
Ordering of dust grains suspended in glow discharge plasmas into quasi-steady liquid-or crystallike structures in an external field is considered. The self-consistent electric field generated by free electrons, ions, and dust grains is found. An estimate is obtained for the confining potential required to hold dust grains in the direction perpendicular to the discharge axis. It is shown that the potential energy of interaction between ordered dust particles has the form characteristic of ionic crystals. Critical parameters are estimated for a liquidlike dust structure. The correlation function calculated for a dusty plasma by using this approach is compared with a measured one.  相似文献   

4.
In this paper, a self‐consistent numerical model describing the behaviour of plasma around isolated highly charged dust particles with different shapes of rotation figures is presented. Dust particles in the form of a sphere, oblate ellipsoids (disk‐like particles), and elongated ellipsoids (rod‐like particles) are considered in the presence of an external electric field. Using the developed model, self‐consistent distributions of a space charge and plasma potential are obtained around non‐spherical dust particles. These distributions are carefully analysed by decomposing them in a series of Legendre polynomials. Decompositions of these distributions are compared with particles of different geometry. In addition, for different geometries of dust particles, the dependencies of the charge of a dust particle on geometry in the absence of an external field are investigated.  相似文献   

5.
The collective movement of dust particles in a plasma formed during deceleration of decay products of californium nuclei in neon is investigated experimentally. For the first time, compact vortex structures containing a large number of coagulating dust particles and dense dust clouds evolving in time are observed. Dust formations have clearly defined boundaries and particles in them form ordered liquid-type structures. Under steady-state conditions, dust structures exist from several minutes to hours. An increase in the voltage applied to the high-voltage electrode leads to the formation of dust particle jets. A change in the electric field configuration transforms the structures from one type to another. A strong recombination of electrons and ions at dust particles is observed. The momentum transfer from ions drifting in an external field to gas molecules is studied using the Monte Carlo method. It is shown that the transferred momentum is so large that it may cause a gas flow. The characteristic features of vortex flow in neon and in air are explained.  相似文献   

6.
The electrostatic interaction of a charged spherical dielectric macroparticle with a point charge in a plasma in the presence of an external uniform electric field is considered. The electrostatic force and the torque acting on the macroparticle have been determined, and the form of the interaction potential has been established for a nonuniform distribution of free charge on the macroparticle surface. A simple (for calculations) expression for the interaction potential that describes well the exact potential at all interparticle distances is proposed. The angular velocity of the spinning of dust particles caused by a nonuniform distribution of free charge over their surface has been estimated.  相似文献   

7.
The formation of strongly coupled stable dust structures in the plasma produced by an electron beam at atmospheric pressure was detected experimentally. Analytical expressions were derived for the ionization rate of a gas by an electron beam in an axially symmetric geometry by comparing experimental data with Monte Carlo calculations. Self-consistent one-dimensional simulations of the beam plasma were performed in the diffusion drift approximation of charged plasma particle transport with electron diffusion to determine the dust particle levitation conditions. Since almost all of the applied voltage drops on the cathode layer in the Thomson glow regime of a non-self-sustained gas discharge, a distribution of the electric field that grows toward the cathode is produced in it; this field together with the gravity produces a potential well in which the dust particles levitate to form a stable disk-shaped structure. The nonideality parameters of the dust component in the formation region of a highly ordered quasi-crystalline structure calculated using computational data for the dust particle charging problem were found to be higher than the critical value after exceeding which an ensemble of particles with a Yukawa interaction should pass to the crystalline state.  相似文献   

8.
A new method is proposed for determining the interaction forces between particles in nonideal dissipative systems with isotropic pair potentials. The method is based on the solution of the inverse problem describing the motion of interacting particles by a system of Langevin equations and allows one to recover the parameters of the external confining potential without referring to a priori information on the friction coefficients of the particles. This procedure was tested by a numerical simulation of the problem in a wide range of parameters typical of experimental conditions in a laboratory dusty plasma. The results of the first experimental approbation of the method as applied to the analysis of the interaction of dust particles in a laboratory high-frequency capacitive discharge plasma are presented.  相似文献   

9.
Examines the dynamics of a collection of charged dust particles in the plasma sheath above a large body in a fully ionized space plasma when the radius of the large body is much larger than the sheath thickness. The dust particles are charged by the plasma, and the forces on the dust particles are assumed to be from the electric field in the sheath and from gravitation only. These forces will often act in opposite directions and may balance, making dust suspension and collection possible. The dust particles are supplied by injection or by electrostatic levitation. The ability of the sheath to collect dust particles, will be optimal for a certain combination of gravitation and plasma and dust particle parameters. In a dense dust sheath, the charges on the dust particles contribute significantly to the total space charge, and collective effects become important. These effects will reduce the magnitude of the sheath electric field strength and the charge on the dust particles. As dust particles are collected, the dust sheath is stretched and the largest dust particles may drop out, because the sheath is no longer able to suspend them. In a tenuous dust sheath, the inner layer, from the surface and about one Debye length thick, will be unstable for dust particle motion, and dust will not collect there. In a dense dust sheath, collective effects will decrease the thickness of this inner dust-free layer, making dust collection closer to the surface possible. By linearization of the force and current equations, the necessary and sufficient conditions for a stable dust sheath are found. The authors consider conditions which resemble those of planetary system bodies, but the results may also be of relevance to some laboratory plasmas  相似文献   

10.
Low-pressure gas discharge plasmas are known to be strongly affected by the presence of small dust particles. This issue plays a role in the investigations of dust particle-forming plasmas, where the dust-induced instabilities may affect the properties of synthesized dust particles. Also, gas discharges with large amounts of microparticles are used in microgravity experiments, where strongly coupled subsystems of charged microparticles represent particle-resolved models of liquids and solids. In this field, deep understanding of dust–plasma interactions is required to construct the discharge configurations which would be able to model the desired generic condensed matter physics as well as, in the interpretation of experiments, to distinguish the plasma phenomena from the generic condensed matter physics phenomena. In this review, we address only physical aspects of dust–plasma interactions, that is, we always imply constant chemical composition of the plasma as well as constant size of the dust particles. We also restrict the review to two discharge types: dc discharge and capacitively coupled rf discharge. We describe the experimental methods used in the investigations of dust–plasma interactions and show the approaches to numerical modelling of the gas discharge plasmas with large amounts of dust. Starting from the basic physical principles governing the dust–plasma interactions, we discuss the state-of-the-art understanding of such complicated, discharge-type-specific phenomena as dust-induced stratification and transverse instability in a dc discharge or void formation and heartbeat instability in an rf discharge.  相似文献   

11.
In this paper, a self‐consistent numerical model that describes the behavior of plasma around an isolated, highly charged dust particle is presented. Using the developed model, self‐consistent distributions of the space charge density and plasma potential in the presence of an external electric field are obtained. These distributions are thoroughly analysed though Legendre decomposition. For different dust plasma parameters, such as the radius of the dust particle, the amplitude of the external field, and the mean free path of ions, the dipole moment of the ion cloud surrounding the dust particle is calculated. It turns out that the dependencies of the dipole moment on the value of the external electric field obtained for different parameters are reduced to a single curve by simple scaling.  相似文献   

12.
The authors consider the Alfven-Arrhenius fall-down process and propose a mechanism whereby the Rosseland electric field (the field needed to maintain quasineutrality) may be responsible for the capture and confinement of large-gyroradius dust particles within a plasma shell stratified along the direction of the magnetic-field lines. For these particles, the effect of the magnetic force is rather weak, and they move with a constant z component of the angular momentum in a one-dimensional equivalent potential (gravitational plus centrifugal). This has a maximum at the equator and a minimum at the `2/3' points, i.e. the points where the field-aligned components of the gravitational and centrifugal forces balance. It is shown that under suitable initial conditions these are points of maximum dust density and minimum plasma density. The plasma-planetisemal transition is therefore expected to take place at the `2/3' points in accordance with the Alfven-Arrhenius mechanism. It is also shown that the fraction of infalling dust particles that can accrete onto the equatorial plane by the Alfven-Arrhenius and Rosseland mechanisms is rather small (~(L/ Re)≪1), L being the thickness of the plasma shell, and Re, a characteristic length scale of the field line  相似文献   

13.
The effect of dust particle concentration on gas discharge plasma parameters was studied through development of a self-consistent kinetic model which is based on solving the Boltzmann equation for the electron distribution function. It was shown that an increase in the Havnes parameter causes an increase in the average electric field and ion density, as well as a decrease in the charge of dust particles and electron density in a dust particle cloud. Self-consistent simulations for a wide range of plasma and dust particle parameters produced several scaling laws: these are laws for dust particle potential and electric field as a function of dust particle concentration and radius, and the discharge current density. The simulation results demonstrate that the process of self-consistent accommodation of parameters of dust particles and plasma in condition of particle concentration growth causes a growth in the number of high-energy electrons in plasma, but not to depletion of electron distribution function.  相似文献   

14.
The effect of plasma polarization around a negatively charged dust particle is investigated with the help of Monte Carlo simulation of ion trajectories in the electric field of the dust particle and an external electric field. The induced dipole moment of such a system was estimated in a wide range of dust particle and plasma parameters. It is shown that the dipole moment is very large, and has a non‐monotonous dependence on the external electric field. For a small external electric field, it weakly depends on the charge of the dust particle. The dipole moment reduces with the decrease of ion mean free path (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A physical interpretation is proposed for the collective attraction of dust particles, leading to pairing of likely (negatively) charged dust particles, the formation of dust molecules, and the emergence of other complexes containing a large number of dust particles (in the limit, dust plasma crystals). The value of the spacing between particles in such dust structures estimated on the basis of the proposed mechanism of attraction corresponds to the observed interparticle distances in the crystal lattices of recently discovered plasma-dust crystals. The proposed mechanism may form the basis for interpreting various phenomena frequently observed in dusty plasmas.  相似文献   

16.
A clear physical model is proposed for phase transitions in a dusty plasma. According to this model, the formation of plasma dust crystals is associated with the nonlinear effect of the collective attraction of dust particles. The nonlinear collective attraction between negatively charged dust particles corresponds to large charges of dust particles used in the available experiments. This concept provides a new physical model of crystallization that is attributable to the capture of dust particles in an attractive potential well rather than to the strong interaction between them. Calculation using this model yields the depth of the attractive potential well and the critical coupling constant in good agreement with the available experimental data.  相似文献   

17.
尘埃粒子充放电过程对尘埃等离子体电导率的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
石雁祥  葛德彪  吴健 《物理学报》2006,55(10):5318-5324
在只受弱电磁场作用且忽略空间色散的情况下,通过求解含碰撞项的电子的Boltzmann方程及尘埃粒子充放电的Shukla方程,导出了弱电离尘埃等离子体的电导率和介电常数计算公式. 将固体火箭喷焰的有关参数代入公式对电导率进行定量分析,结果表明,尘埃粒子的大小及其浓度对弱电离尘埃等离子体的电导率有明显的影响. 关键词: 尘埃等离子体 Boltzmann方程 Shukla方程 电导率  相似文献   

18.
We have studied the charging of dust particles in a dense photoresonant sodium plasma with electron and ion densities as high as 1016 cm?3 produced by laser pumping of the resonance level of Na, which was a small admixture (up to 1%) in an argon buffer gas. We show that the charge of dust particles with a radius of 10 mm at maximum reaches 3 × 105 electron charges and that the potential of the dust particles at a low electron bulk loss rate agrees well with the orbital motion limited (OML) model data. The behavior of the electric field near a dust particle was found to be nonmonotonic. We established that the distribution of the potential near a solitary charged dust particle agrees well with the Debye one, but the screening length proves to be much larger than even the electron Debye length; the discrepancies are largest at the afterglow stage of the photoresonant plasma, when the sodium ion with a low recombination coefficient is the main plasma ion. We determined the domain of parameters for a dense plasma where an ensemble of dust particles can crystallize.  相似文献   

19.
The nonlinear dust acoustic solitary waves in a magnetized dusty plasma with nonthermal ions and variable dust electric charge is studied analytically. Using reductive perturbation method the Zakharov‐Kuznetsov (ZK) equation is derived and effect of nonthermal coefficient, external magnetic field, and variable dust electric charge on the amplitude and width of soliton in dusty plasma is investigated. With increasing the rate of dust charge variation with respect of plasma potential, the amplitude of generated solitary waves in magnetized dusty plasma increases to a constant magnitude while its width decreases. Increasing the nonthermal ions coefficient leads to a noticeable decrease in the amplitude of solitons while the width of soliton increases. The amplitude of generated solitary waves in such a dusty plasma is independent of applied external magnetic field but we will have more localized solitons with increasing the external magnetic field strength. It is found that solitons are strongly influenced by the direction of external magnetic field. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Formation of dust particles and clusters is observed in almost every modern thermonuclear facility. Accumulation of dust in the next generation thermonuclear installations can dramatically affect the plasma parameters and lead to the accumulation of unacceptably large amounts of tritium. Experiments on collection of dust particles by a model of electrostatic probe developed for collection of metallic dust at ITER are described in the article. Experiments on the generation of tungsten dust consisting of flakes formed during the destruction of tungsten layers formed on the walls of the plasma chamber sputtered from the surface of the tungsten target by plasma ions were conducted. The nature of dust degassing at elevated temperatures and the behavior of dust in an electric field were studied. The results obtained are compared with the results of the experiments with dust consisting of crystal particles of simple geometric shapes. The effectiveness of collection of both types of dust using the model of an electrostatic probe is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号