首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Compounds Ln3MO7, where Ln = La, Nd, Gd, Ho, Er, Y, or Sc, and M = Nb, Ta, or Sb have been examined by powder X-ray diffraction, electron diffraction, and electron microscopy. For large Ln cations, an orthorhombic fluorite-related superstructure is formed, of probable space group Cmcm for Ln = La and C2221 for Ln = Nd, Gd, Ho, or Y, while for the smaller Ln cations, Er, and under some conditions, Ho and Y, the structure is defect fluorite containing microdomains of ordered, but undetermined, structure. The composition Sc3MO7 was not single phase under the conditions used. Compounds of the type Ln2ScMO7 have the pyrochlore structure.  相似文献   

2.
We report a structural study of the stuffed pyrochlore series Ln2(Ti2−xLnx)O7−x/2 (Ln=Ho, Yb; 0?x?0.67). Electron microscopy and Rietveld refinements of neutron powder diffraction data for the x=0.67 end members, Ho2TiO5 and Yb2TiO5, reveal that small domains (∼50 Å or less) exist where the Ln and Ti/Ln sublattices are pyrochlore like, while the average structure is fluorite like. Both the Ho and Yb stuffed pyrochlore series for 0.1?x?0.5 are shown to be a composite of long- and short-range-ordered pyrochlore phases. The relative fraction of long-range vs. short-range pyrochlore order decreases with increasing Ln doping. An additional complex structural modulation of the pyrochlore structure is observed in electron diffraction and high-resolution electron microscopy images.  相似文献   

3.
Ab initio energetic calculations based on the density functional theory (DFT) and projector augmented wave (PAW) pseudo-potentials method were performanced to determine the crystal structural parameters and phase transition data of the polymorphic rare-earth sesquioxides Ln2O3 (where Ln=La-Lu, Y, and Sc) with A-type (hexagonal) and B-type (monoclinic) configurations at ground state. The calculated results agree well with the limited experimental data and the critically assessed results. A set of systematic and self-consistent crystal structural parameters, energies and pressures of the phase transition were established for the whole series of the A- and B-type rare-earth sesquioxides Ln2O3. With the increase of the atomic number, the ionic radii of rare-earth elements Ln and the volumes of the sesquioxides Ln2O3 reflect the so-called “lanthanide contraction”. With the increase of the Ln3+-cation radius, the bulk modulus of Ln2O3 decreases and the polymorphic structures show a degenerative tendency.  相似文献   

4.
Ternary lanthanide scandates (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho) have been synthesized at ambient pressure. Their structure has been investigated at room temperature by Rietveld analysis of powder X-ray diffraction data. The Ln-scandates are orthorhombic perovskites, adopting space group Pbnm (? 62), ab≈√2ap, c≈2ap, Z=4. Heavy lanthanides (Er-Lu), and Y do not form perovskites at ambient conditions. Compositionally driven phase transitions were not observed. The unit-cell parameters decrease with increasing ScO6 octahedron rotation and atomic number of the Ln cation. In common with lanthanide orthoferrites, the uniform structural evolution is interrupted at the middle-heavy part of the lanthanide sequence. This is probably due to an interplay between: (i) enlargement of the ScO6 octahedra relative to BO6 in other perovskites (e.g., FeO6 in GdFeO3); (ii) reduction in size of the first coordination sphere of Ln3+ coincident with the lanthanide contraction; (iii) coincident expansion of the second coordination sphere due to screening effects of OI1 on OI2, and entry of Sc to the lanthanide coordination sphere; (iv) complex mixing between oxygen and lanthanide lanthanide f- and scandium d-orbitals. In the series studied, Ln3+ are in eight-fold coordination (tetragonal antiprism), and are considerably displaced from the center of the LnO8 polyhedron along [001]. Evolution of the crystallochemical characteristics through the Ln orthoscandate series is complex due to both the antipathetic distortions of A- and B-site coordination polyhedra and interaction of the orbitals of oxygen, Ln and Sc. Empirically obtained limits of Goldschmidt and observed viiito tolerance factors for ternary LnBO3 compounds adopting the Pbnm structure are 0.795 and 0.841, respectively.  相似文献   

5.
The formation of solid solutions Ln2?xBixTi2O7, where Ln = La to Lu and Y, except Ce, Pm, and Eu, has been studied by Raman spectroscopy and to a lesser extent by X-ray diffraction. It has been established that the solubility of bismuth increases with decreasing ionic radius of the lanthanide element. No evidence was experimentally found in this work for the existence of Bi2Ti2O7.  相似文献   

6.
The crystal structures of the compounds La2−xYxZr2O7 and La2−xYxHf2O7 with x=0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 have been studied using neutron powder diffraction and electron microscopy to determine the stability fields of the pyrochlore and fluorite solid solutions. The limits of pyrochlore stability in these solid solutions are found to be close to La0.8Y1.2Zr2O7 and La0.4Y1.6Hf2O7, respectively. In both systems the unit cell parameter is found to vary linearly with Y content across those compositions where the pyrochlore phase is stable, as does the x-coordinate of the oxygen atoms on the 48f (x,,) sites. In both systems, linear extrapolations of the pyrochlore data suggest that the disordering is accompanied by a small decrease in the lattice parameter of approximately 0.4%. After the pyrochlore solid solution limit is reached, a sharp change is observed from x∼0.41 to 0.375 as the disordered defect fluorite structure is favoured. Electron diffraction patterns illustrate that some short-range order remains in the disordered defect fluorite phases.  相似文献   

7.
The cationic networks that fix the distribution of cations in planar sections parallel to basis planes of the unit cell of crystal structures have been studied. Topologically identical cationic networks have been shown to be the carriers of deep structure-forming “memory” that successively relates the structures of rare earth metals (La ST) and oxides Ln2O3 (A-and B-Ln2O3 ST) to the structures of double condensed phosphates MLn(PO3)4 and MLnP4O12.  相似文献   

8.
The compounds LnSrScO4, where Ln=La, Ce, Pr, Nd and Sm, have been synthesized. Rietveld profile analysis of powder X-ray diffraction data collected at room temperature reveal that the compounds possess a modified K2NiF4-type structure with orthorhombic cell symmetry formed by tilting of the ScO6 octahedra. Variable temperature (25-1200 °C) powder X-ray diffraction data show that at the highest temperatures the structures of LaSrScO4 and PrSrScO4 transform to the regular tetragonal K2NiF4-structure type but the degree of orthorhombicity (c/a) in the unit cells initially increases on heating for all materials, reaching a maximum near 300 °C. This structural behavior is analyzed in terms of relative ionic radii of the various lanthanides and scandium. A general structural model based on tolerance factors has been developed for the family of materials A2BO4 with various A and B cation sizes.  相似文献   

9.
Bulk and nanosized pyrochlore materials Ln2ZrTiO7 (Ln=La, Eu, Dy, Gd and Sm) have been prepared by the sol-gel method. All the samples were characterized by powder X-ray diffraction, Raman and X-ray photoelectron spectroscopy. Magnetic susceptibility (χ) measurements of Gd2ZrTiO7, Sm2ZrTiO7 and Eu2ZrTiO7 were carried out by vibrating sample magnetometer in the temperature range 2-320 K. The variation of χ−1 (or χ) with temperature of Gd2ZrTiO7, Sm2ZrTiO7 and Eu2ZrTiO7 follows the Curie law, intermediate formula and the Curie-Weiss law, respectively. From the linear portion of χT vs. T−1 plot of Eu2ZrTiO7 from 2 to 15 K, the classical nearest neighbor exchange (Jcl) and dipolar interactions (Dnn) are obtained. The XPS of Ln2ZrTiO7 (Ln=La, Eu, Dy and Gd) gave characteristic peaks for Ln, Ti, Zr and O. The satellite peaks are observed only for 3d La of La2ZrTiO7.  相似文献   

10.
The identity of the pyrochlore phase seen during the synthesis of ferroelectric Bi4−xLnxTi3O12 Aurivillius oxides is shown to be Bi2/3Ln4/3Ti2O7. This pyrochlore is only stable for Ln3+=Sm3+ or smaller. For larger lanthanides the layered Aurivillius oxide is favoured. The presence of six-fold disorder, associated with the Bi 6s2 lone pair electrons, is believed to stabilise the unexpected stoichiometry of this oxide. Precise structures, obtained by Rietveld refinement from synchrotron X-ray diffraction data, of three examples Ln3+=Eu, Ho and Yb are presented.  相似文献   

11.
To obtain rare earth luminescent materials with weak concentration quenching, the B2O3-rich portion of the ternary diagram Ln2O3MgOB2O3 (Ln = rare earth) has been investigated. A ternary phase of composition LnMgB5O10 has been found for Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er. These compounds all crystallize in the monoclinic space group P21c. The structure has been determined on a LaMgB5O10 crystal. A full-matrix least-squares refinement leads to R = 0.039. The structure can be described as being made of (B5O105?)n two-dimensional layers linked together by the lanthanum and magnesium ions. The rare earth atom coordination polyhedra form isolated chains. These borates are isostructural with some rare earth cobalt borates.  相似文献   

12.
Six new lanthanide complexes, (H3O)[Ln3(H2O)17(α2-As2W17O61)]·nH2O ((1) Ln=CeIII and n≈13; (2) Ln=PrIII and n≈9; (3) Ln=NdIII and n≈14; (4) Ln=SmIII and n≈8; (5) Ln=EuIII and n≈4; (6) Ln=GdIII and n≈7), have been isolated by conventional solution method and characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction. All the complexes are isomorphic and crystallize in the triclinic space group P-1. These complexes are 1D chain-like structures constructed by lanthanide cations and monovacant Dawson-type [α2-As2W17O61]10− polyoxoanions. The striking feature of the structures is that there are three kinds of coordination environments for lanthanide cations, which are responsible for the formation of polymeric structures. Photoluminescence measurements reveal that 4 and 5 exhibit orange and red fluorescent emission at room temperature, respectively.  相似文献   

13.
Single crystals of double-perovskite type lanthanide magnesium iridium oxides, Ln2MgIrO6 (Ln=Pr, Nd, Sm-Gd) have been grown in a molten potassium hydroxide flux. The compounds crystallize in a distorted 1:1 rock salt lattice, space group P21/n, consisting of corner shared MO6 (M=Mg2+ and Ir4+) octahedra, where the rare earth cations occupy the eight-fold coordination sites formed by the corner shared octahedra. Pr2MgIrO6, Nd2MgIrO6, Sm2MgIrO6, and Eu2MgIrO6 order antiferromagnetically around 10-15 K.  相似文献   

14.
Single crystals of new Cu,Lu(Ho)–alumoborate and known Cu,Al–borate were synthesized through reaction between CuB2O4 and LnBO3 on the Al2O3 surface by annealing at 1100 °C. Structure of commensurate modification of Ln4AlCu2B9O23, (Ln = Lu,Ho), sp. gr. , was solved at room temperature. It was found that a low–temperature (110 K) modification possesses incommensurate modulations with modulation vector q =(0, 0, 0.132). The nonaborate block – [B9O23]19– – 9[6T+3Δ] forms an isolated unique dense closed anionic unit. This block is terminated by Al–tetrahedrons in the chessboard pattern, resulting in formation of complex alumoborate layer [AlB9O23]16–. Apical oxygen of central BO3 triangle of the nonaborate block seems to be the source of modulations observed in low temperature polymorph. Cationic layers with the Ln and Cu atoms are alternating along c axis with anionic layers. The structure Cu2Al6B4O17, previously studied by the Rietveld method, was corroborated by single crystal data and was compared with LiAl7B4O17.  相似文献   

15.
The local environments for oxygen in yttrium-containing pyrochlores and fluorites, Y2(B1−xBx)2O7 (B=Ti, B′=Sn, Zr) are investigated by using solid state 17O MAS NMR spectroscopy. The quadrupolar coupling constants of the nucleus, 17O are sufficiently small for these ionic oxides, that high-resolution spectra are obtained from the MAS spectra. Different oxygen NMR resonances are observed due to local environments with differing numbers of metal cations (Y3+, Sn4+, Ti4+ and Zr4+), allowing the numbers of different local environments to be quantified and cation mixing to be investigated. Evidence for pyrochlore-like local ordering is detected for Y2Zr2O7, which nominally adopts the fluorite structure.  相似文献   

16.
Two isotypic layered rare-earth borate phosphates, K3Ln[OB(OH)2]2[HOPO3]2 (Ln=Yb, Lu), were synthesized hydrothermally and the crystal structures were determined by single-crystal X-ray diffraction (R3?, Z=3, Yb: a=5.6809(2) Å, c=36.594(5) Å, V=1022.8(2) Å3, Lu: a=5.6668(2) Å, c=36.692(2) Å, V=1020.4(1) Å3). The crystal structure can be described in terms of stacking of Glaserite-type slabs consisting of LnO6 octahedra interlinked by phosphate tetrahedra and additional layers of [OB(OH)2]- separated by K+ ions. Field and temperature dependent measurements of the magnetic susceptibility of the Yb-compound revealed Curie-Weiss paramagnetic behavior above 120 K (μeff=4.7 μB). Magnetic ordering was not observed down to 1.8 K.  相似文献   

17.
We report the syntheses, crystal structure, and magnetic properties of a series of distorted K2NiF4-type oxides Ln2Ca2MnNiO8 (Ln=Pr, Nd, Sm, and Gd) in which Ln/Ca and Mn/Ni atoms randomly occupy the K and Ni sites respectively. The Ln=La compound does not form. These compounds show systematic distortions from the ideal tetragonal K2NiF4 structure (space group I4/mmm) to an orthorhombic structure (space group Pccn) with buckled MO2 (M=Mn/Ni) layers. The degree of distortion is increased as the size of Ln decreases. Based on the magnetic data and X-ray absorption near edge spectra, we assigned MnIV and NiII. The Curie–Weiss plots of the high temperature magnetic data suggest strong ferromagnetic interactions probably due to MnIV–O–NiII linkages, implying local ordering of Mn/Ni ions to form ferromangnetic clusters in the MO2 layers. At low temperatures below 110–130 K, these compounds show antiferromagnetic behaviors because of MnIV–O–MnIV and/or NiII–O–NiII contacts between the ferromagnetic clusters. The Ln=Pr and Nd compounds show additional antiferromagnetic signals that we attribute to the interlayer interactions between the clusters mediated by the Pr3+ and Nd3+ ions in the interlayer spaces. The present compounds show many parallels with the previously reported Ln2Sr2MnNiO8 compounds.  相似文献   

18.
Synthesis and crystal structures are described for the compounds Ln2(Ti2−xLnx)O7−x/2, where Ln=Tb, Dy, Ho, Er, Tm, Yb, Lu, and x ranges from 0 to 0.67. Rietveld refinements of X-ray powder diffraction data indicate that in the Tb and Dy titanate pyrochlores, the extra Ln3+ cations mix mainly on the Ti4+ site with little disorder on the original Ln3+ site. For the smaller rare earths (Ho-Lu), stuffing additional lanthanide ions results in a pyrochlore to defect fluorite transition, where the Ln3+ and Ti4+ ions become completely randomized at the maximum (x=0.67). Initial magnetic characterization for the fully stuffed x=0.67 samples for Ln=Tb-Yb shows no long range ordering down to 2 K, and only partial saturation of the full expected magnetic moment under applied fields up to 5 T. In all of these Ln-Ti-O pyrochlores, the addition of magnetic Ln3+ in place of non-magnetic Ti4+ adds edge sharing tetrahedral spin interactions to a normally corner sharing tetrahedral network of spins. The increase in spin connectivity in this family of solid solutions represents a new avenue for investigating geometrical magnetic frustration in the rare earth titanate pyrochlores.  相似文献   

19.
Syntheses, Crystal Structures, and Properties of Ln4Au2O9 (Ln = Nd, Sm, Eu) The compounds Ln4Au2O9 (Ln = Nd, Sm, Eu) have been prepared from amorphous Au2O3 · 2–3 H2O and Ln2O3 (Ln = Nd, Sm, Eu) via solid state reaction under elevated oxygen pressure adding KOH as mineralising agent. They are isostructural with La4Au2O9 (Nd4Au2O9: a = 11.9813(3), b = 6.1474(1), c = 11.9641(4); 453 powder intensities, Rp = 3.75%; Sm4Au2O9: a = 11.8689(4), b = 6.0360(1), c = 11.8469(4) Å; 812 unique reflections, R1 = 2.75%; Eu4Au2O9: a = 11.8241(3), b = 5.9922(1) Å, c = 11.8013(3) Å; 1315 unique reflections, R1 = 7.83%). The crystal structure of Nd4Au2O9 was refined from powder diffraction data. The structures of Sm4Au2O9 and Eu4Au2O9 were solved and refined from single crystal data. The isolated square planar AuO4 units are stacked as columns and are linked to each other by LnO7‐polyhedra. One of the oxygen atoms is exclusively connected to the trivalent lanthanides in tetrahedral geometry. Ln4Au2O9, Bi2CuO4, Bi2AuO5 and Bi4Au2O9 are closely related, structurally. The lanthanoid aurates decompose between 700 and 800 °C into Ln2O3, Au and O2. The effective magnetic moments 3.64 μB (Nd4Au2O9), 1.7 μB (Sm4Au2O9) and 3.3 μB (Eu4Au2O9) confirm that the lanthanides are trivalent. The UV/VIS absorption spectra can be interpreted at assuming free ions.  相似文献   

20.
The orthorhombic fluorite-related superstructure phase Y3TaO7 is non-stoichiometric; the Y2O3 content may be varied from 75.0 to about 72.5 mole% without incurring structural changes. For overall Y2O3 contents from 72.0 to 70.5 mole%, the crystal symmetry changes from C2221 to Cmmm, and the c axis becomes halved. The structure of the low-Y2O3 material has been determined from powder X-ray diffraction intensities supplemented by single crystal electron-optical data. The relationship of this structure to that of stoichiometric Y3TaO7 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号