首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of positive linear functionals (states) (Fragoulopoulou et al., J Math Anal Appl 388(2):1180–1193, 2012; Trapani and Triolo, Stud Math 184(2):133–148, 2008; Trapani and Triolo, Rend Circolo Mat Palermo 59:295–302, 2010; La Russa and Triolo, J Oper Theory, 69:2, 2013; Triolo, J Pure Appl Math, 43(6):601–617, 2012). In this paper, a new condition is given in an attempt to provide a extension of the non commutative integration.  相似文献   

2.
This work focuses on sampling from hidden Markov models (Cappe et al. 2005) whose observations have intractable density functions. We develop a new sequential Monte Carlo (e.g. Doucet, 2011) algorithm and a new particle marginal Metropolis-Hastings (Andrieu et al J R Statist Soc Ser B 72:269-342, 2010) algorithm for these purposes. We build from Jasra et al (2013) and Whiteley and Lee (Ann Statist 42:115-141, 2014) to construct the sequential Monte Carlo (SMC) algorithm, which we call the alive twisted particle filter. Like the alive particle filter (Amrein and Künsch, 2011, Jasra et al, 2013), our new SMC algorithm adopts an approximate Bayesian computation (Tavare et al. Genetics 145:505-518, 1997) estimate of the HMM. Our alive twisted particle filter also uses a twisted proposal as in Whiteley and Lee (Ann Statist 42:115-141, 2014) to obtain a low-variance estimate of the HMM normalising constant. We demonstrate via numerical examples that, in some scenarios, this estimate has a much lower variance than that of the estimate obtained via the alive particle filter. The low variance of this normalising constant estimate encourages the implementation of our SMC algorithm within a particle marginal Metropolis-Hastings (PMMH) scheme, and we call the resulting methodology “alive twisted PMMH”. We numerically demonstrate, on a stochastic volatility model, how our alive twisted PMMH can converge faster than the standard alive PMMH of Jasra et al (2013).  相似文献   

3.
Field inversion in \(\mathbb {F}_{2^{m}}\) dominates the cost of modern software implementations of certain elliptic curve cryptographic operations, such as point encoding/hashing into elliptic curves (Brown et al. in: Submission to NIST, 2008; Brown in: IACR Cryptology ePrint Archive 2008:12, 2008; Aranha et al. in: Cryptology ePrint Archive, Report 2014/486, 2014) Itoh–Tsujii inversion using a polynomial basis and precomputed table-based multi-squaring has been demonstrated to be highly effective for software implementations (Taverne et al. in: CHES 2011, 2011; Oliveira et al. in: J Cryptogr Eng 4(1):3–17, 2014; Aranha et al. in: Cryptology ePrint Archive, Report 2014/486, 2014), but the performance and memory use depend critically on the choice of addition chain and multi-squaring tables, which in prior work have been determined only by suboptimal ad-hoc methods and manual selection. We thoroughly investigated the performance/memory tradeoff for table-based linear transforms used for efficient multi-squaring. Based upon the results of that investigation, we devised a comprehensive cost model for Itoh–Tsujii inversion and a corresponding optimization procedure that is empirically fast and provably finds globally-optimal solutions. We tested this method on eight binary fields commonly used for elliptic curve cryptography; our method found lower-cost solutions than the ad-hoc methods used previously, and for the first time enables a principled exploration of the time/memory tradeoff of inversion implementations.  相似文献   

4.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

5.
The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method \(\alpha \)-branch-and-bound (\(\alpha \)BB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with \(\epsilon \)-convergence for any \(\mathcal {C}^2\)-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the \(\alpha \)BB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) \(\alpha \)BB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) \(\alpha \)BB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.  相似文献   

6.
Since at least de Finetti (Annales de l’Institut Henri Poincare 7:1–68, 1937), preference symmetry assumptions have played an important role in models of decision making under uncertainty. In the current paper, we explore (1) the relationship between the symmetry assumption of Klibanoff et al. (KMS) (Econometrica 82:1945–1978, 2014) and alternative symmetry assumptions in the literature, and (2) assuming symmetry, the relationship between the set of relevant measures, shown by KMS (2014) to reflect only perceived ambiguity, and the set of measures (which we will refer to as the Bewley set) developed by Ghirardato et al. (J Econ Theory 118:133–173, 2004), Nehring (Ambiguity in the context of probabilistic beliefs, working paper, 2001, Bernoulli without Bayes: a theory of utility-sophisticated preference, working paper, 2007) and Ghirardato and Siniscalchi (A more robust definition of multiple priors, working paper, 2007, Econometrica 80:2827–2847, 2012). This Bewley set is the main alternative offered in the literature as possibly representing perceived ambiguity. Regarding symmetry assumptions, we show that, under relatively mild conditions, a variety of preference symmetry conditions from the literature [including that in KMS (2014)] are equivalent. In KMS (2014), we showed that, under symmetry, the Bewley set and the set of relevant measures are not always the same. Here, we establish a preference condition, No Half Measures, that is necessary and sufficient for the two to be the same under symmetry. This condition is rather stringent. Only when it is satisfied may the Bewley set be interpreted as reflecting only perceived ambiguity and not also taste aspects such as ambiguity aversion.  相似文献   

7.
We discuss the existence of a blow-up solution for a multi-component parabolic–elliptic drift–diffusion model in higher space dimensions. We show that the local existence, uniqueness and well-posedness of a solution in the weighted \(L^2\) spaces. Moreover we prove that if the initial data satisfies certain conditions, then the corresponding solution blows up in a finite time. This is a system case for the blow up result of the chemotactic and drift–diffusion equation proved by Nagai (J Inequal Appl 6:37–55, 2001) and Nagai et al. (Hiroshima J Math 30:463–497, 2000) and gravitational interaction of particles by Biler (Colloq Math 68:229–239, 1995), Biler and Nadzieja (Colloq Math 66:319–334, 1994, Adv Differ Equ 3:177–197, 1998). We generalize the result in Kurokiba and Ogawa (Differ Integral Equ 16:427–452, 2003, Differ Integral Equ 28:441–472, 2015) and Kurokiba (Differ Integral Equ 27(5–6):425–446, 2014) for the multi-component problem and give a sufficient condition for the finite time blow up of the solution. The condition is different from the one obtained by Corrias et al. (Milan J Math 72:1–28, 2004).  相似文献   

8.
Piecewise affine functions on subsets of \(\mathbb R^m\) were studied in Aliprantis et al. (Macroecon Dyn 10(1):77–99, 2006), Aliprantis et al. (J Econometrics 136(2):431–456, 2007), Aliprantis and Tourky (Cones and duality, 2007), Ovchinnikov (Beitr\(\ddot{\mathrm{a}}\)ge Algebra Geom 43:297–302, 2002). In this paper we study a more general concept of a locally piecewise affine function. We characterize locally piecewise affine functions in terms of components and regions. We prove that a positive function is locally piecewise affine iff it is the supremum of a locally finite sequence of piecewise affine functions. We prove that locally piecewise affine functions are uniformly dense in \(C(\mathbb R^m)\), while piecewise affine functions are sequentially order dense in \(C(\mathbb R^m)\). This paper is partially based on Adeeb (Locally piece-wise affine functions, 2014)  相似文献   

9.
In this paper, we study the asymptotic behavior of the outliers of the sum a Hermitian random matrix and a finite rank matrix which is not necessarily Hermitian. We observe several possible convergence rates and outliers locating around their limits at the vertices of regular polygons as in Benaych-Georges and Rochet (Probab Theory Relat Fields, 2015), as well as possible correlations between outliers at macroscopic distance as in Knowles and Yin (Ann Probab 42(5):1980–2031, 2014) and Benaych-Georges and Rochet (2015). We also observe that a single spike can generate several outliers in the spectrum of the deformed model, as already noticed in Benaych-Georges and Nadakuditi (Adv Math 227(1):494–521, 2011) and Belinschi et al. (Outliers in the spectrum of large deformed unitarily invariant models 2012, arXiv:1207.5443v1). In the particular case where the perturbation matrix is Hermitian, our results complete the work of Benaych-Georges et al. (Electron J Probab 16(60):1621–1662, 2011), as we consider fluctuations of outliers lying in “holes” of the limit support, which happen to exhibit surprising correlations.  相似文献   

10.
In (Chil et al. Positivity, 2014), the authors claim to give a counterexample to the main result, about Wickstead’s question, in a recent paper of Toumi (see Theorem 3, When orthomorphisms are in the ideal center, Positivity 18(3):579–583, 2014). In this note we show that their example is consistent with the main result of Toumi and not a counterexample.  相似文献   

11.
Consider a critical branching random walk on the real line. In a recent paper, Aïdékon (2011) developed a powerful method to obtain the convergence in law of its minimum after a log-factor translation. By an adaptation of this method, we show that the point process formed by the branching random walk seen from the minimum converges in law to a decorated Poisson point process. This result, confirming a conjecture of Brunet and Derrida (J Stat Phys 143:420–446, 2011), can be viewed as a discrete analog of the corresponding results for the branching Brownian motion, previously established by Arguin et al. (2010, 2011) and Aïdékon et al. (2011).  相似文献   

12.
In this paper, we consider a Markov additive insurance risk process under a randomized dividend strategy in the spirit of Albrecher et al. (2011). Decisions on whether to pay dividends are only made at a sequence of dividend decision time points whose intervals are Erlang(n) distributed. At a dividend decision time, if the surplus level is larger than a predetermined dividend barrier, then the excess is paid as a dividend as long as ruin has not occurred. In contrast to Albrecher et al. (2011), it is assumed that the event of ruin is monitored continuously (Avanzi et al. (2013) and Zhang (2014)), i.e. the surplus process is stopped immediately once it drops below zero. The quantities of our interest include the Gerber-Shiu expected discounted penalty function and the expected present value of dividends paid until ruin. Solutions are derived with the use of Markov renewal equations. Numerical examples are given, and the optimal dividend barrier is identified in some cases.  相似文献   

13.
We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97–118, 2008), Chen and Li (Appl Math Comput 170:686–705, 2005), Chen and Li (Appl Math Comput 324:1381–1394, 2006), Ferreira (J Comput Appl Math 235:1515–1522, 2011), Ferreira and Gonçalves (Comput Optim Appl 48:1–21, 2011), Ferreira and Gonçalves (J Complex 27(1):111–125, 2011), Li et al. (J Complex 26:268–295, 2010), Li et al. (Comput Optim Appl 47:1057–1067, 2004), Proinov (J Complex 25:38–62, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines: new directions in pure, applied and computational mathematics 185–196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123–134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.  相似文献   

14.
This note tries to answer issues raised in Bhardwaj and Kumar (J Optim Theory Appl 163(2): 685–696, 2014). The research summarizes that the results obtained in Khan et al. (J Optim Theory Appl 159: 536–546, 2013) are sound and correct and it fulfills all the necessary requirements of its scope and objectives.  相似文献   

15.
We provide two new characterizations of the Takagi function as the unique bounded solution of some systems of two functional equations. The results are independent of those obtained by Kairies (Wy? Szko? Ped Krakow Rocznik Nauk Dydakt Prace Mat 196:73–82, 1998), Kairies (Aequ Math 53:207–241, 1997), Kairies (Aequ Math 58:183–191, 1999) and Kairies et al. (Rad Mat 4:361–374, 1989; Errata, Rad Mat 5:179–180, 1989).  相似文献   

16.
Multiscale stochastic volatilities models relax the constant volatility assumption from Black-Scholes option pricing model. Such models can capture the smile and skew of volatilities and therefore describe more accurately the movements of the trading prices. Christoffersen et al. Manag Sci 55(2):1914–1932 (2009) presented a model where the underlying price is governed by two volatility components, one changing fast and another changing slowly. Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013) transformed Christoffersen’s model and computed an approximate formula for pricing American options. They used Duhamel’s principle to derive an integral form solution of the boundary value problem associated to the option price. Using method of characteristics, Fourier and Laplace transforms, they obtained with good accuracy the American option prices. In a previous research of the authors (Canhanga et al. 2014), a particular case of Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013) model is used for pricing of European options. The novelty of this earlier work is to present an asymptotic expansion for the option price. The present paper provides experimental and numerical studies on investigating the accuracy of the approximation formulae given by this asymptotic expansion. We present also a procedure for calibrating the parameters produced by our first-order asymptotic approximation formulae. Our approximated option prices will be compared to the approximation obtained by Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013).  相似文献   

17.
The question of the global regularity versus finite- time blowup in solutions of the 3D incompressible Euler equation is a major open problem of modern applied analysis. In this paper, we study a class of one-dimensional models of the axisymmetric hyperbolic boundary blow-up scenario for the 3D Euler equation proposed by Hou and Luo (Multiscale Model Simul 12:1722–1776, 2014) based on extensive numerical simulations. These models generalize the 1D Hou–Luo model suggested in Hou and Luo Luo and Hou (2014), for which finite-time blowup has been established in Choi et al. (arXiv preprint. arXiv:1407.4776, 2014). The main new aspects of this work are twofold. First, we establish finite-time blowup for a model that is a closer approximation of the three-dimensional case than the original Hou–Luo model, in the sense that it contains relevant lower-order terms in the Biot–Savart law that have been discarded in Hou and Luo Choi et al. (2014). Secondly, we show that the blow-up mechanism is quite robust, by considering a broader family of models with the same main term as in the Hou–Luo model. Such blow-up stability result may be useful in further work on understanding the 3D hyperbolic blow-up scenario.  相似文献   

18.
The famous for its simplicity and clarity Newton–Kantorovich hypothesis of Newton’s method has been used for a long time as the sufficient convergence condition for solving nonlinear equations. Recently, in the elegant study by Hu et al. (J Comput Appl Math 219:110–122, 2008), a Kantorovich-type convergence analysis for the Gauss–Newton method (GNM) was given improving earlier results by Häubler (Numer Math 48:119–125, 1986), and extending some results by Argyros (Adv Nonlinear Var Inequal 8:93–99, 2005, 2007) to hold for systems of equations with constant rank derivatives. In this study, we use our new idea of recurrent functions to extend the applicability of (GNM) by replacing existing conditions by weaker ones. Finally, we provide numerical examples to solve equations in cases not covered before (Häubler, Numer Math 48:119–125, 1986; Hu et al., J Comput Appl Math 219:110–122, 2008; Kontorovich and Akilov 2004).  相似文献   

19.
In this note we consider a special case of the famous Coarea Formula whose initial proof (for functions from any Riemannian manifold of dimension 2 into \({\mathbb {R}}\)) is due to Kronrod (Uspechi Matem Nauk 5(1):24–134, 1950) and whose general proof (for Lipschitz maps between two Riemannian manifolds of dimensions n and p) is due to Federer (Am Math Soc 93:418–491, 1959). See also Maly et al. (Trans Am Math Soc 355(2):477–492, 2002), Fleming and Rishel (Arch Math 11(1):218–222, 1960) and references therein for further generalizations to Sobolev mappings and BV functions respectively. We propose two counterexamples which prove that the coarea formula that we can find in many references (for example Bérard (Spectral geometry: direct and inverse problems, Springer, 1987), Berger et al. (Le Spectre d’une Variété Riemannienne, Springer, 1971) and Gallot (Astérisque 163(164):31–91, 1988), is not valid when applied to \(C^\infty \) functions. The gap appears only for the non generic set of non Morse functions.  相似文献   

20.
Smale’s 17th problem asks for an algorithm which finds an approximate zero of polynomial systems in average polynomial time (see Smale in Mathematical problems for the next century, American Mathematical Society, Providence, 2000). The main progress on Smale’s problem is Beltrán and Pardo (Found Comput Math 11(1):95–129, 2011) and Bürgisser and Cucker (Ann Math 174(3):1785–1836, 2011). In this paper, we will improve on both approaches and prove an interesting intermediate result on the average value of the condition number. Our main results are Theorem 1 on the complexity of a randomized algorithm which improves the result of Beltrán and Pardo (2011), Theorem 2 on the average of the condition number of polynomial systems which improves the estimate found in Bürgisser and Cucker (2011), and Theorem 3 on the complexity of finding a single zero of polynomial systems. This last theorem is similar to the main result of Bürgisser and Cucker (2011) but relies only on homotopy methods, thus removing the need for the elimination theory methods used in Bürgisser and Cucker (2011). We build on methods developed in Armentano et al. (2014).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号