首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluoroethylene carbonate (FEC) is investigated as the electrolyte additive to improve the electrochemical performance of high voltage LiNi0.6Co0.2Mn0.2O2 cathode material. Compared to LiNi0.6Co0.2Mn0.2O2/Li cells in blank electrolyte, the capacity retention of the cells with 5 wt% FEC in electrolytes after 80 times charge-discharge cycle between 3.0 and 4.5 V significantly improve from 82.0 to 89.7%. Besides, the capacity of LiNi0.6Co0.2Mn0.2O2/Li only obtains 12.6 mAh g?1 at 5 C in base electrolyte, while the 5 wt% FEC in electrolyte can reach a high capacity of 71.3 mAh g?1 at the same rate. The oxidative stability of the electrolyte with 5 wt% FEC is evaluated by linear sweep voltammetry and potentiostatic data. The LSV results show that the oxidation potential of the electrolytes with FEC is higher than 4.5 V vs. Li/Li+, while the oxidation peaks begin to appear near 4.3 V in the electrolyte without FEC. In addition, the effect of FEC on surface of LiNi0.6Co0.2Mn0.2O2 is elucidated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The analysis result indicates that FEC facilitates the formation of a more stable surface film on the LiNi0.6Co0.2Mn0.2O2 cathode. The electrochemical impedance spectroscopy (EIS) result evidences that the stable surface film could improve cathode electrolyte interfacial resistance. These results demonstrate that the FEC can apply as an additive for 4.5 V high voltage electrolyte system in LiNi0.6Co0.2Mn0.2O2/Li cells.  相似文献   

2.
The LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles were synthesized via co-precipitation method followed by simple chemical deposition process. The crystal structure, particle morphology, and electrochemical properties of the bare and coated materials were studied by XRD, SEM, TEM, charge–discharge tests. The results showed that the surface coating on Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles were amorphous LaF3 layer with a thickness of about 10–30 nm. After the surface modification with LaF3 films, the coating layer served as a protective layer to suppress the side reaction between the positive electrode and electrolyte, and the Li[Li0.2Mn0.54Ni0.13Co0.13]O2 oxide demonstrated the improved electrochemical properties. The LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 electrode delivered the capacities of 270.5, 247.9, 197.1, 170.0, 142.7, and 109.5 mAh g?1 at current rates of 0.1, 0.2, 0.5, 1, 2, and 5 C rate, respectively. Besides, the capacity retention was increased from 85.1 to 94.8 % after 100 cycles at 0.5 C rate. It implied surface modification with LaF3 played an important role to improve the cyclic stability and rate capacity of the Li-rich nickel manganese oxides.  相似文献   

3.
In this wok, a series of LiNi0.5Mn1.5O4 (LNMO) samples with an octahedral shape entirely composed of (111) crystal planes were prepared by calcining the mixture of the precursor Ni0.25Mn0.75(OH)2 and LiOH·H2O at 800 °C for 15 h in air, followed by annealing them at 600 °C for different dwelling times. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and several electrochemical technologies were used to investigate the effect of annealing time on properties of the LNMO samples. XRD analysis indicates that the lattice parameters of the LNMO samples show a decreasing trend with increasing of annealing time, and the impurity peaks become less apparent for the sample annealed for 6 h and almost disappear for the samples annealed for 9 and 24 h. SEM results show that the annealing time has no obvious influence on the morphologies of the LNMO samples. Electrochemical measurements show that the electrochemical performances (capacity, cycle life, and rate capability) of the samples annealed for 6, 9, and 24 h are better than those of the unannealed sample, and the sample annealed for 9 h shows the best electrochemical properties among them due to its superior electrochemical kinetics of Li+ insertion/desertion.  相似文献   

4.
The high-voltage spinel-type LiNi0.5Mn1.5O4 (LNMO) is a promising cathode material for next-generation lithium ion batteries. In this study, hollow LNMO microspheres have been synthesized via co-precipitation method accompanied with high-temperature calcinations. The physical and electrochemical properties of the materials are characterized by x-ray diffraction (XRD), TGA, RAMAN, CV, scanning electron microscope (SEM), transmission electon microscopy (TEM), electrochemical impendence spectroscopy (EIS), and charge-discharge tests. The results prove that the microspheres combine hollow structures inward and own a cubic spinel structure with space group of Fd-3m, high crystallinity, and excellent electrochemical performances. With the short Li+ diffusion length and hollow structure, the hierarchical LNMO microspheres exhibit 138.2 and 108.5 mAh g?1 at 0.5 and 10 C, respectively. Excellent cycle stability is also demonstrated with more than 98.8 and 88.2 % capacity retention after 100 cycles at 1 and 10 C, respectively.  相似文献   

5.
The thermodynamic stability is a very important quantity for the electrode materials, because it is not only related to the electrochemical performances of the materials but also the safety issue of the cells. To evaluate the thermodynamic stability of Li x Ni0.5Mn1.5O4 (x = 0, 1), the formation enthalpies from elemental phases and oxides were obtained. The values for LiNi0.5Mn1.5O4 were calculated to be ?1341.10 and ?141.84 kJ mol?1, while those for Ni0.5Mn1.5O4 were ?949.11 and ?49.21 kJ mol?1. These values are much more negative than those of LiCoO2 and LiNiO2 compounds, indicating that the thermodynamic stability of Li x Ni0.5Mn1.5O4 is better than the two classic compounds. To clarify the microscopic origin, the density of states, magnetic moments, and bond orders were systematically investigated. The results showed that the excellent thermodynamic stability of LiNi0.5Mn1.5O4 is attributed to the absence of Jahn-Teller distortions, strong electrostatic interactions of Li–O ionic bond, and strong Ni–O/Mn–O ionic-covalent mixing bonds. After lithium extraction, the disappearance of the pure Li–O bonds leads to an increase of formation enthalpy, indicating a decreasing thermodynamic stability for Ni0.5Mn1.5O4 with respect to LiNi0.5Mn1.5O4.  相似文献   

6.
Yttrium fluoride YF3 layer with different coating contents is successfully covered on the surface of Li1.2Mn0.54Ni0.13Co0.13O2 via a common wet chemical approach. The XRD, SEM, TEM, and charge-discharge tests are applied to investigate the influence of YF3 layer on the micro-structural, morphology, and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2. And the electrochemical test results demonstrate that the YF3-coated LMNCO samples exhibit the improved electrochemical properties. The 2wt.%YF3-coated LMNCO delivers a discharge capacity of 116.6 mAh g?1 at 5 C rate, much larger than that (95.6 mAh g?1) of the pristine one. Besides, the electrochemical impedance spectroscopy (EIS) and cyclic voltammetric results indicate that the YF3 coating layer can promote the optimization formation of SEI film and reversibility of the electrochemical redox.  相似文献   

7.
Effects of two different precipitants of Na2CO3 and Na2C2O4 on LiNi0.5Mn1.5O4 (LNMO) cathode materials, which are prepared by a modified co-precipitation method, have been investigated. Various measurements have been applied to characterize the physical and electrochemical performances of LNMO. Compared with the LNMO prepared by the oxalate co-precipitation (LNMO2), the material synthesized by the carbonate co-precipitation (LNMO1) not only shows more uniform porosity and smaller particles but also has a better rate capability and cycling performance. In addition, the sample prepared by carbonate has a stable spherical structure, due to the fact that carbonate co-precipitation with less gas release during calcination can prevent the destruction of the as-prepared LNMO material structure and promote the formation of regular particle and aperture. Based on the electrochemical test results, LNMO1 shows greatly enhanced electrochemical performance of a high initial discharge capacity of 125.6 mAh g?1 at 0.25 °C, as well as a preferably capacity retention of 96.5% after 100 cycles at 0.5 °C. And even at a high rate of 10 °C, the discharge capacity of LNMO1-based cell still approaches 83.1 mAh g?1.  相似文献   

8.
Zhenye Zhu  Fangyuan Cai  Jie Yu 《Ionics》2016,22(8):1353-1359
Li-rich layered-layered-Spinel structure spherical Li1.3Mn4/6Ni1/6Co1/6O2.40 particles was successfully prepared and coated with a uniform layer by a two-step co-precipitation method and evaluated in lithium cells. The structures and electrochemical properties of pristine Li1.3Mn4/6Ni1/6Co1/6O2.40 and AlF3-coated Li1.3Mn4/6Ni1/6Co1/6O2.40 were characterized. When the coating amount was 2 wt%, the cathode showed the best cycling performance and rate capability compared to others. The AlF3-coated Li1.3Mn4/6Ni1/6Co1/6O2.40 Li-ion cell cathode had a capacity retention of 90.07 % after 50 cycles at 0.5 C over 2.0–4.8 V, while the pristine Li1.3Mn4/6Ni1/6Co1/6O2.40 exhibited capacity retention of only 80.73 %. Moreover, the rate capability and cyclic performance also improved. Electrochemical impedance spectroscopy testing revealed that the improved electrochemical performance might attribute to the AlF3 coating layer which can suppress the increase of impedance during the charging and discharging process by preventing direct contact between the highly delithiated active material and electrolyte.  相似文献   

9.
To improve the electrochemical performance of Nickel-rich cathode material LiNi0.8Co0.1Mn0.1O2, an in situ coating technique with Li2ZrO3 is successfully applied through wet chemical method, and the thermoelectrochemical properties of the coated material at different ambient temperatures and charge-discharge rates are investigated by electrochemical-calorimetric method. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests demonstrate that the Li2ZrO3 coating decreases the electrode polarizatoin and reduces the charge transfer resistance of the material during cycling. Moreover, it is found that with the ambient temperatures and charge-discharge rates increase, the specific capacity decreases, the amount of heat increases, and the enthalpy change (ΔH) increases. The specific capacity of the cells at 30 °C are 203.8, 197.4, 184.0, and 174.5 mAh g?1 at 0.2, 0.5, 1.0, and 2.0 C, respectively. Under the same rate (2.0 C), the amounts of heat of the cells are 381.64, 645.32, and 710.34 mJ at 30, 40, and 50 °C. These results indicate that Li2ZrO3 coating plays an important role to enhance the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 and reveal that choosing suitable temperature and current is critical for solving battery safety problem.  相似文献   

10.
The LiNi0.8Co0.1Mn0.1O2 with LiAlO2 coating was obtained by hydrolysis–hydrothermal method. The morphology of the composite was characterized by SEM, TEM, and EDS. The results showed that the LiAlO2 layer was almost completely covered on the surface of particle, and the thickness of coating was about 8–12 nm. The LiAlO2 coating suppressed side reaction between composite and electrolyte; thus, the electrochemical performance of the LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 was improved at 40 °C. The LiAlO2-coated sample delivered a high discharge capacity of 181.2 mAh g?1 (1 C) with 93.5% capacity retention after 100 cycles at room temperature and 87.4% capacity retention after 100 cycles at 40 °C. LiAlO2-coated material exhibited an excellent cycling stability and thermal stability compared with the pristine material. These works will contribute to the battery structure optimization and design.  相似文献   

11.
Al-doped ZnO (AZO) was sputtered on the surface of LiNi1/3Co1/3Mn1/3O2 (NCM) thin film electrode via radio frequency magnetron sputtering, which was demonstrated to be a useful approach to enhance electrochemical performance of thin film electrode. The structure and morphology of the prepared electrodes were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, and transmission electron microscopy techniques. The results clearly demonstrated that NCM thin film showed a strong (104) preferred orientation and AZO was uniformly covered on the surface of NCM electrode. After 200 cycles at 50 μA μm?1 cm?2, the NCM/AZO-60s electrode delivered highest discharge capacity (78.1 μAh μm?1 cm?2) compared with that of the NCM/AZO-120s electrode (62.4 μAh μm?1 cm?2) and the bare NCM electrode (22.3 μAh μm?1 cm?2). In addition, the rate capability of the NCM/AZO-60s electrode was superior to the NCM/AZO-120s and bare NCM electrodes. The improved electrochemical performance can be ascribed to the appropriate thickness of the AZO coating layer, which not only acted as HF scavenger to keep a stable electrode/electrolyte interface but also reduced the charge transfer resistance during cycling.  相似文献   

12.
Layered lithium-enriched nickel manganese oxides Li1.2Ni0.2Mn0.6O2 have been synthesized and coated by fast ionic conductor Li3VO4 with varying amounts (1, 3, and 5 wt%) in this paper. The effect of Li3VO4 on the physical and electrochemical properties of Li1.2Ni0.2Mn0.6O2 has been discussed through the characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), discharge, cyclic performance, rate capability, and electrochemical impedance spectroscopy (EIS). The discharge capacity and coulomb efficiency of Li1.2Ni0.2Mn0.6O2 in the first cycle have been improved after Li3VO4 coating. And, the 3 wt% Li3VO4-coated Li1.2Ni0.2Mn0.6O2 shows the best discharge capacity (246.8 mAh g?1), capacity retention (97.3 % for 50 cycles), and rate capability (90.4 mAh g?1 at 10 C). Electrochemical impedance spectroscopy (EIS) results show that the R ct of Li1.2Ni0.2Mn0.6O2 electrode decreases after Li3VO4 coating, which is due to high lithium ion diffusion coefficient of Li3VO4, is responsible for superior rate capability.  相似文献   

13.
Spinel LiNi0.5Mn1.5O4 cathode materials with different lithium excess amount (0, 2%, 6%, 10%) were synthesized by a facile solid-state method. The effect of lithium excess amount on the microstructure, morphology, and electrochemical properties of LiNi0.5Mn1.5O4 materials was systematically investigated. The results show that the lithium excess amount does not change the particle morphology and size obviously; thus, the electrochemical properties of LiNi0.5Mn1.5O4 are mainly determined by structural characteristics. With the increase of lithium excess amount, the cation disordering degree (Mn3+ content) and phase purity first increase and then decrease, while the cation mixing extent has the opposite trend. Among them, the LiNi0.5Mn1.5O4 material with 6% lithium excess amount exhibits higher disordering degree and lower impurity content and cation mixing extent, thus leading to the optimum electrochemical properties, with discharge capacities of 125.0, 126.1, 124.2, and 118.9 mAh/g at 0.2-, 1-, 5-, and 10-C rates and capacity retention rate of 96.49% after 100 cycles at 1-C rate.  相似文献   

14.
The high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) with submicron particle size (LNMO-8505P70010) has been synthesized based on nickel-manganese compound, which is obtained from pre-sintering the nickel-manganese hydroxide precipitation at 850 °C. The LNMO materials based on nickel-manganese hydroxide (LNMO-70010, LNMO-850570010, and LNMO-8501070010) have also been synthesized for comparison to study the pre-sintering impact on the properties of LiNi0.5Mn1.5O4 material. The morphologies and structures of the obtained samples have been analyzed by X-ray powder diffraction and scanning electron microscopy. The nickel-manganese compound has a spinel structure with high crystallinity, making it a good precursor to form high-performance LNMO with lower content of Mn3+ and impurity. The obtained LNMO-8505P70010 delivers discharge capacities of 125.4 mA h g?1 at 0.2 C, and the capacity retention of 15 C reaches 73.8 % of the capacity retention of 0.2? C. Furthermore, it shows a superior cyclability with the capacity retention of 96.4 % after 150 cycles at 5 ?C. Compared with the synthesis method without pre-sintering, the synthesis method with pre-sintering can save energy while reaching the same discharge specific capacity.  相似文献   

15.
LiNi0.5Co0.2Mn0.3O2 particles of uniform size were prepared through carbonate co-precipitation method with acacia gum. The precursor of carbonate mixture was calcined at 800 °C, and a well-crystallized Ni-rich layered oxide was got. The phase structure and morphology were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The micro-sized particles delivered high initial discharge capacity of 164.3 mA h g?1 at 0.5 C (1 C?=?200 mA g?1) between 2.5 and 4.3 V with capacity retention of 87.5 % after 100 cycles. High reversible discharge capacities of 172.4 and 131.4 mA h g?1 were obtained at current density of 0.1 and 5 C, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed to further study the LiNi0.5Co0.2Mn0.3O2 particles. Anyway, the excellent electrochemical performances of LiNi0.5Co0.2Mn0.3O2 sample should be attributed to the use of acacia gum.  相似文献   

16.
Vinyl ethylene carbonate (VEC) is investigated as an electrolyte additive to improve the electrochemical performance of LiNi0.4Mn0.4Co0.2O2/graphite lithium-ion battery at higher voltage operation (3.0–4.5 V) than the conventional voltage (3.0–4.25 V). In the voltage range of 3.0–4.5 V, it is shown that the performances of the cells with VEC-containing electrolyte are greatly improved than the cells without additive. With 2.0 wt.% VEC addition in the electrolyte, the capacity retention of the cell is increased from 62.5 to 74.5 % after 300 cycles. The effects of VEC on the cell performance are investigated by cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), x-ray powder diffraction (XRD), energy dispersive x-ray spectrometry (EDS), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results show that the films electrochemically formed on both anode and cathode, derived from the in situ decomposition of VEC at the initial charge–discharge cycles, are the main reasons for the improved cell performance.  相似文献   

17.
Manganese oxide-based cathodes are one of the most promising lithium-ion battery (LIB) cathode materials due to their cost-effectiveness, high discharge voltage plateau (above 4.0 V vs. Li/Li+), superior rate capability, and environmental benignity. However, these batteries using conventional LiPF6-based electrolytes suffer from Mn dissolution and poor cyclic capability at elevated temperature. In this paper, the ionic liquid (IL)-based electrolytes, consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfon)imidate (PYR1,4-TFSI), propylene carbonate (PC), lithium bis(trifluoromethanesulfon)imide (LiTFSI), and lithium oxalyldifluoroborate (LiDFOB) additive, were explored for improving the high temperature performance of the LiMn2O4 batteries. It was demonstrated that LiTFSI-ILs/PC electrolyte associated with LiDFOB addition possessed less Mn dissolution and Al corrosion at the elevated temperature in LiMn2O4/Li batteries. Cyclic voltammetry and electrochemical impedance spectroscopy implied that this kind of electrolyte also contributed to the formation of a highly stable solid electrolyte interface (SEI), which was in accordance with the polarization measurement and the Li deposition morphology of the symmetric lithium metal cell, thus beneficial for improving the cycling performance of the LiMn2O4 batteries at the elevated temperature. Cyclic voltammetry and electrochemical impedance spectroscopy implied that the cells using this kind of electrolyte exhibited better interfacial stability, which was further verified by the polarization measurement and the Li deposition morphology of the symmetric lithium metal cell, thus beneficial for improving the cycling performance of the LiMn2O4 batteries at the elevated temperature. These unique characteristics would endow this kind of electrolyte a very promising candidate for the manganese oxide-based batteries.  相似文献   

18.
(Ni0.8Mn0.1Co0.1)(OH)2 and Co(OH)2 secondly treated by LiNi0.8Mn0.1Co0.1O2 have been prepared via co-precipitation and high-temperature solid-state reaction. The residual lithium contents, XRD Rietveld refinement, XPS, TG-DSC, and electrochemical measurements are carried out. After secondly treating process, residual lithium contents decrease drastically, and occupancy of Ni in 3a site is much lower and Li/Ni disorder decreases. The discharge capacity is 193.1, 189.7, and 182 mAh g?1 at 0.1 C rate, respectively, for LiNi0.8Mn0.1Co0.1O2-AP, -NT, and -CT electrodes between 3.0 and 4.2 V in pouch cell. The capacity retention has been greatly improved during gradual capacity fading of cycling at 1 C rate. The noticeably improved thermal stability of the samples after being treated can also be observed.  相似文献   

19.
Spinel-type LiNi0.5Mn1.5O4 (LNMO) cathode materials for lithium ion batteries have been synthesized via a modified oxalate co-precipitation method. By virtue of the co-precipitation of Li+ with transition metal ions, the target materials can be obtained through one-pot reaction without subsequent mixing with lithium salts. What’s more, a uniform distribution between the lithium and transition metal ions at molecular level could be realized, which is beneficial for final electrochemical performances. The physical and electrochemical properties of the material are characterized by XRD, TGA, EDS, FT-IR, SEM, CV, EIS, and charge/discharge tests. The results prove that the as-prepared material owns a cubic spinel structure with a space group of Fd-3m, high crystallinity, uniform particle size, and excellent electrochemical performances. A higher initial capacity and superior rate performance are delivered compared with that of material by conventional co-precipitation method. High capacities of 131.7 and 104.0 mAh g?1 could be displayed at 0.5 and 10 C, respectively. Excellent cycle stability is also demonstrated with more than 98.5 % capacity retention after 100 cycles at 1 C.  相似文献   

20.
Lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 doped with trace Mo is successfully synthesized by a sol-gel method. The X-ray diffraction patterns show that trace Mo substitution increases the inter-layer space of the material, of which is benefiting to lithium ion insertion/extraction among the electrode materials. The (CV) tests demonstrate the decrease of polarization, and on the other hand, the lithium ion diffusion coefficient (D Li) of the modified material turns out to be larger, which indicates a faster electrochemical process. As a result, the Mo doped material possesses high rate performance and good cycling stability, and the initial discharge capacity reaches 149.3 mAh g?1 at a current density of 5.0 °C, and the residual capacity is 144.0 mAh g?1 after 50 cycles with capacity retention of 96.5 % in the potential range of 2.0–4.8 V at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号