首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The layered Li1.2Mn0.54Ni0.13Co0.13O2 lithium-rich manganese-based solid solution cathode material has been synthesized by a simple solid-state method. The as-prepared material has a typical layered structure with R-3m and C2/m space group. The synthesized Li1.2Mn0.54Ni0.13Co0.13O2 has an irregular shape with the size range from 200 to 500 nm, and the primary particle of Li1.2Mn0.54Ni0.13Co0.13O2 has regular sphere morphology with a diameter of 320 nm. Electrochemical performances also have been investigated. The results show that the cathode material Li1.2Mn0.54Ni0.13Co0.13O2 prepared at 900 °C for 12 h has a good electrochemical performance, which can deliver a high initial discharge capacity of 233.5, 214.2, 199.3, and 168.1 mAh g?1 at 0.1, 0.2, 0.5, and 1 C, respectively. After 50 cycles, the capacity retains 178.0, 166.3, 162.1, and 155.9 mAh g?1 at 0.1, 0.2, 0.5, and 1 C, respectively. The results indicate that the simple method has a great potential in synthesizing manganese-based cathode materials for Li-ion batteries.  相似文献   

2.
Yttrium fluoride YF3 layer with different coating contents is successfully covered on the surface of Li1.2Mn0.54Ni0.13Co0.13O2 via a common wet chemical approach. The XRD, SEM, TEM, and charge-discharge tests are applied to investigate the influence of YF3 layer on the micro-structural, morphology, and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2. And the electrochemical test results demonstrate that the YF3-coated LMNCO samples exhibit the improved electrochemical properties. The 2wt.%YF3-coated LMNCO delivers a discharge capacity of 116.6 mAh g?1 at 5 C rate, much larger than that (95.6 mAh g?1) of the pristine one. Besides, the electrochemical impedance spectroscopy (EIS) and cyclic voltammetric results indicate that the YF3 coating layer can promote the optimization formation of SEI film and reversibility of the electrochemical redox.  相似文献   

3.
Lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 doped with trace Mo is successfully synthesized by a sol-gel method. The X-ray diffraction patterns show that trace Mo substitution increases the inter-layer space of the material, of which is benefiting to lithium ion insertion/extraction among the electrode materials. The (CV) tests demonstrate the decrease of polarization, and on the other hand, the lithium ion diffusion coefficient (D Li) of the modified material turns out to be larger, which indicates a faster electrochemical process. As a result, the Mo doped material possesses high rate performance and good cycling stability, and the initial discharge capacity reaches 149.3 mAh g?1 at a current density of 5.0 °C, and the residual capacity is 144.0 mAh g?1 after 50 cycles with capacity retention of 96.5 % in the potential range of 2.0–4.8 V at room temperature.  相似文献   

4.
The Li-rich cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 had been successfully synthesized by a carbonate coprecipitation method. The effects of substituting traces of Al element for different transitional metal elements on the crystal structure and surface morphology had been investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy. The results revealed that all the materials showed similar XRD patterns and surface morphology. It was demonstrated that LNCMAl1 exhibited the superior electrochemical performance. The discharge capacity was 265.2 mAh g?1 at 0.1 C and still maintained a discharge capacity of 135.6 mAh g?1 at 5.0 C. The capacity retention could still be 58.2 and 66.8% after 50 cycles at 1.0 and 2.0 C, respectively. Electrochemical impedance spectra results proved that the remarkably improved rate capability and cycling performance could be ascribed to the low charge transfer resistance and enhanced reaction kinetics.  相似文献   

5.
Lithium-rich cathode materials Li1.2Ni0.13Co0.13Mn0.54O2 with (sample SF) and without (sample SP) formamide was synthesized by a spray-dry method. The crystalline structure and particle morphology of as-prepared materials were characterized by X-ray diffraction and scanning electron microscope. The specific surface area (SSA) of the Li1.2Ni0.13Co0.13Mn0.54O2 prepared from different routes was determined by a five-point Brunauer–Emmett–Teller (BET) method using N2 as absorbate gas. Being compared with the material synthesized without spray-drying process (sample CP), sample SP has much higher SSA. The additive formamide is helpful to form regular and solid precursor particles in spray-drying process, which results in a slightly aggregation of grains and reduction of SSA for sample SF. The electrochemical activities of the materials are closely related to their morphology and SSA. In the voltage range of 2–4.8 V at 25 °C, sample SP present a discharge capacity of 257 mAh g?1 at 0.1 C rate and 170 mAh g?1 at 1 C rate. The sample CP delivered only 136 mAh g?1 when discharged at 1 C rate. The elevated specific capacity and rate capability are attributed to smaller primary particle and higher SSA. Both cycle performance and rate capability of Li1.2Ni0.13Co0.13Mn0.54O2 were improved when formamide was used in spray-dry process. Discharge capacity of SF is 140.5 mAh g?1 at 2 C rate, and that of SP is 132.3 mAh g?1. Overlarge SSA of SP may provoke serious side reaction, so that its electrochemical performance was deteriorated.  相似文献   

6.
The LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles were synthesized via co-precipitation method followed by simple chemical deposition process. The crystal structure, particle morphology, and electrochemical properties of the bare and coated materials were studied by XRD, SEM, TEM, charge–discharge tests. The results showed that the surface coating on Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles were amorphous LaF3 layer with a thickness of about 10–30 nm. After the surface modification with LaF3 films, the coating layer served as a protective layer to suppress the side reaction between the positive electrode and electrolyte, and the Li[Li0.2Mn0.54Ni0.13Co0.13]O2 oxide demonstrated the improved electrochemical properties. The LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 electrode delivered the capacities of 270.5, 247.9, 197.1, 170.0, 142.7, and 109.5 mAh g?1 at current rates of 0.1, 0.2, 0.5, 1, 2, and 5 C rate, respectively. Besides, the capacity retention was increased from 85.1 to 94.8 % after 100 cycles at 0.5 C rate. It implied surface modification with LaF3 played an important role to improve the cyclic stability and rate capacity of the Li-rich nickel manganese oxides.  相似文献   

7.
The Li[Li0.2Mn0.54Ni0.13Co0.13]O2 coated with CeO2 has been fabricated by an ionic interfusion method. Both the bare and the CeO2-coated samples have a typical layered structure with R-3m and C2/m space group. The results of XRD and TEM images display that the CeO2 coating layer on the precursor could enhance the growth of electrochemically active surface planes ((010), (110), and (100) planes) in the following ionic interfusion process. The results of galvanostatic cycling tests demonstrate that the CeO2-coated sample has a discharge capacity of 261.81 mAh g?1 with an increased initial Coulombic efficiency from 62.4 to 69.1% at 0.05 °C compared with that of bare sample and delivers an improved capacity retention from 71.7 to 83.4% after 100 cycles at 1 °C (1 °C?=?250 mA g?1). The results of electrochemical performances confirm that the surface modification sample exhibits less capacity fading, lower voltage decay, and less polarization.  相似文献   

8.
Li1.2Ni0.13Co0.13Mn0.54O2 powders have been prepared through co-precipitation of metal oxalate precursor and subsequent solid state reaction with lithium carbonate. X-ray diffraction pattern shows that the massive rock-like structure has a good layered structure and solid solution characteristic. Scanning electron microscope and transition electron microscope images reveal that the Li1.2Ni0.13Co0.13Mn0.54O2 composed of nanoparticles have the size of 1–2 μm. As a lithium ion battery positive electrode, the Li1.2Ni0.13Co0.13Mn0.54O2 has an initial discharge capacity of 285.2 mAh g?1 at 0.1 C within 2.0–4.8 V. When the cutoff voltage is decreased to 4.6 V, the cycling stability of product can be greatly improved, and a discharge capacity of 178.5 mAh g?1 could be retained at 0.5 C after 100 cycles. At a high charge–discharge rate of 5 C (1,000 mAh g?1), a stable discharge capacity of 121.4 mAh g?1 also can be reached. As the experimental results, the Li1.2Ni0.13Co0.13Mn0.54O2 prepared from oxalate precursor route is suitable as lithium ion battery positive electrode.  相似文献   

9.
Cr-doped layered oxides Li[Li0.2Ni0.2???x Mn0.6???x Cr2x ]O2 (x?=?0, 0.02, 0.04, 0.06) were synthesized by co-precipitation and high-temperature solid-state reaction. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TRTEM), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). XRD patterns and HRTEM results indicate that the pristine and Cr-doped Li1.2Ni0.2Mn0.6O2 show the layered phase. The Li1.2Ni0.16Mn0.56Cr0.08O2 shows the best electrochemical properties. The first discharge specific capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 249.6 mA h g?1 at 0.1 C, while that of Li1.2Ni0.2Mn0.6O2 is 230.4 mA h g?1. The capacity retaining ratio of Li1.2Ni0.16Mn0.56Cr0.08O2 is 97.9% compared with 93.9% for Li1.2Ni0.2Mn0.6O2 after 80 cycles at 0.2 C. The discharge capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 126.2 mA h g?1 at 5.0 C, while that of the pristine Li1.2Ni0.2Mn0.6O2 is about 94.5 mA h g?1. XPS results show that the content of Mn3+ in the Li1.2Ni0.2Mn0.6O2 can be restrained after Cr doping during the cycling, which results in restraining formation of spinel-like structure and better midpoint voltages. The lithium-ion diffusion coefficient and electronic conductivity of Li1.2Ni0.2Mn0.6O2 are enhanced after Cr doping, which is responsible for the improved rate performance of Li1.2Ni0.16Mn0.56Cr0.08O2.  相似文献   

10.
The LiNi0.8Co0.1Mn0.1O2 with LiAlO2 coating was obtained by hydrolysis–hydrothermal method. The morphology of the composite was characterized by SEM, TEM, and EDS. The results showed that the LiAlO2 layer was almost completely covered on the surface of particle, and the thickness of coating was about 8–12 nm. The LiAlO2 coating suppressed side reaction between composite and electrolyte; thus, the electrochemical performance of the LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 was improved at 40 °C. The LiAlO2-coated sample delivered a high discharge capacity of 181.2 mAh g?1 (1 C) with 93.5% capacity retention after 100 cycles at room temperature and 87.4% capacity retention after 100 cycles at 40 °C. LiAlO2-coated material exhibited an excellent cycling stability and thermal stability compared with the pristine material. These works will contribute to the battery structure optimization and design.  相似文献   

11.
The layered Li-rich Mn-based cathode materials Li[Li0.2Mn0.54Ni0.13Co0.13]O2 were prepared by using co-precipitation technique at different temperatures, and their crystal microstructure and particle morphology were observed and analyzed by XRD and SEM. The electrochemical properties of these samples were investigated by using charge-discharge tests, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), respectively. The results indicated that all samples are of high purity. When the precursors were co-precipitated at 50 °C, their cathode materials have the most uniform and full particles and exhibit the highest initial discharge capacity (289.4 mAh/g at 0.1C), the best cycle stability (capacity retention rate of 91.2 % after 100 cycles at 0.5C), and the best rate performance. The EIS results show that the lower charge transfer resistance of 50 °C sample is responsible for its superior discharge capacity and rate performance.  相似文献   

12.
A comparison of electrochemical performance between LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials was conducted in this paper. The cathode samples were synthesized by a nano-milling-assisted solid-state process using caramel as carbon sources. The prepared samples were investigated by XRD, SEM, TEM, energy-dispersive X-ray spectroscopy (EDAX), powder conductivity test (PCT), carbon-sulfur analysis, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge cycling. The results showed that LiFe0.4Mn0.595Cr0.005PO4/C exhibited high specific capacity and high energy density. The initial discharge capacity of LiFe0.4Mn0.595Cr0.005PO4/C was 163.6 mAh g?1 at 0.1C (1C = 160 mA g?1), compared to 112.3 mAh g?1 for LiMnPO4/C. Moreover, the Fe/Cr-substituted sample showed good cycle stability and rate performance. The capacity retention of LiFe0.4Mn0.595Cr0.005PO4/C was 98.84 % over 100 charge-discharge cycles, while it was only 86.64 % for the pristine LiMnPO4/C. These results indicated that Fe/Cr substitution enhanced the electronic conductivity for the prepared sample and facilitated the Li+ diffusion in the structure. Furthermore, LiFe0.4Mn0.595Cr0.005PO4/C composite presented high energy density (606 Wh kg?1) and high power density (574 W kg?1), thus suggested great potential application in lithium ion batteries (LIBs).  相似文献   

13.
Layered lithium-enriched nickel manganese oxides Li1.2Ni0.2Mn0.6O2 have been synthesized and coated by fast ionic conductor Li3VO4 with varying amounts (1, 3, and 5 wt%) in this paper. The effect of Li3VO4 on the physical and electrochemical properties of Li1.2Ni0.2Mn0.6O2 has been discussed through the characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), discharge, cyclic performance, rate capability, and electrochemical impedance spectroscopy (EIS). The discharge capacity and coulomb efficiency of Li1.2Ni0.2Mn0.6O2 in the first cycle have been improved after Li3VO4 coating. And, the 3 wt% Li3VO4-coated Li1.2Ni0.2Mn0.6O2 shows the best discharge capacity (246.8 mAh g?1), capacity retention (97.3 % for 50 cycles), and rate capability (90.4 mAh g?1 at 10 C). Electrochemical impedance spectroscopy (EIS) results show that the R ct of Li1.2Ni0.2Mn0.6O2 electrode decreases after Li3VO4 coating, which is due to high lithium ion diffusion coefficient of Li3VO4, is responsible for superior rate capability.  相似文献   

14.
Guoqiang Liu  Lei Wen  Yue Li  Yulong Kou 《Ionics》2015,21(4):1011-1016
The pure phase P2-Na2/3Ni1/3Mn2/3O2 was synthesized by a solid reaction process. The optimum calcination temperature was 850 °C. The as-prepared product delivered a capacity of 158 mAh g?1 in the voltage range of 2–4.5 V, and there was a phase transition from P2 to O2 at about 4.2 V in the charge process. The P2 phase exhibited excellent intercalation behavior of Na ions. The reversible capacity is about 88.5 mAh g?1 at 0.1 C in the voltage range of 2–4 V at room temperature. At an elevated temperature of 55 °C, it could remain as an excellent capacity retention at low current rates. The P2-Na2/3Ni1/3Mn2/3O2 is a potential cathode material for sodium-ion batteries.  相似文献   

15.
Zhenye Zhu  Fangyuan Cai  Jie Yu 《Ionics》2016,22(8):1353-1359
Li-rich layered-layered-Spinel structure spherical Li1.3Mn4/6Ni1/6Co1/6O2.40 particles was successfully prepared and coated with a uniform layer by a two-step co-precipitation method and evaluated in lithium cells. The structures and electrochemical properties of pristine Li1.3Mn4/6Ni1/6Co1/6O2.40 and AlF3-coated Li1.3Mn4/6Ni1/6Co1/6O2.40 were characterized. When the coating amount was 2 wt%, the cathode showed the best cycling performance and rate capability compared to others. The AlF3-coated Li1.3Mn4/6Ni1/6Co1/6O2.40 Li-ion cell cathode had a capacity retention of 90.07 % after 50 cycles at 0.5 C over 2.0–4.8 V, while the pristine Li1.3Mn4/6Ni1/6Co1/6O2.40 exhibited capacity retention of only 80.73 %. Moreover, the rate capability and cyclic performance also improved. Electrochemical impedance spectroscopy testing revealed that the improved electrochemical performance might attribute to the AlF3 coating layer which can suppress the increase of impedance during the charging and discharging process by preventing direct contact between the highly delithiated active material and electrolyte.  相似文献   

16.
Fluoroethylene carbonate (FEC) is investigated as the electrolyte additive to improve the electrochemical performance of high voltage LiNi0.6Co0.2Mn0.2O2 cathode material. Compared to LiNi0.6Co0.2Mn0.2O2/Li cells in blank electrolyte, the capacity retention of the cells with 5 wt% FEC in electrolytes after 80 times charge-discharge cycle between 3.0 and 4.5 V significantly improve from 82.0 to 89.7%. Besides, the capacity of LiNi0.6Co0.2Mn0.2O2/Li only obtains 12.6 mAh g?1 at 5 C in base electrolyte, while the 5 wt% FEC in electrolyte can reach a high capacity of 71.3 mAh g?1 at the same rate. The oxidative stability of the electrolyte with 5 wt% FEC is evaluated by linear sweep voltammetry and potentiostatic data. The LSV results show that the oxidation potential of the electrolytes with FEC is higher than 4.5 V vs. Li/Li+, while the oxidation peaks begin to appear near 4.3 V in the electrolyte without FEC. In addition, the effect of FEC on surface of LiNi0.6Co0.2Mn0.2O2 is elucidated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The analysis result indicates that FEC facilitates the formation of a more stable surface film on the LiNi0.6Co0.2Mn0.2O2 cathode. The electrochemical impedance spectroscopy (EIS) result evidences that the stable surface film could improve cathode electrolyte interfacial resistance. These results demonstrate that the FEC can apply as an additive for 4.5 V high voltage electrolyte system in LiNi0.6Co0.2Mn0.2O2/Li cells.  相似文献   

17.
A Co3O4/vapor-grown carbon fiber (VGCF) hybrid material is prepared by a facile approach, namely, via liquid-phase carbonate precipitation followed by thermal decomposition of the precipitate at 380 °C for 2 h in argon gas flow. The material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area analysis, and carbon elemental analysis. The Co3O4 in the hybrid material exhibits the morphology of porous submicron secondary particles which are self assembled from enormous cubic-phase crystalline Co3O4 nanograins. The electrochemical performance of the hybrid as a high-capacity conversion-type anode material for lithium-ion batteries is investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic discharge/charge methods. The hybrid material demonstrates high specific capacity, good rate capability, and good long-term cyclability, which are far superior to those of the pristine Co3O4 material prepared under similar conditions. For example, the reversible charge capacities of the hybrid can reach 1100–1150 mAh g?1 at a lower current density of 0.1 or 0.2 A g?1 and remain 600 mAh g?1 at the high current density of 5 A g?1. After 300 cycles at 0.5 A g?1, a high charge capacity of 850 mAh g?1 is retained. The enhanced electrochemical performance is attributed to the incorporated VGCFs as well as the porous structure and the smaller nanograins of the Co3O4 active material.  相似文献   

18.
(Ni0.8Mn0.1Co0.1)(OH)2 and Co(OH)2 secondly treated by LiNi0.8Mn0.1Co0.1O2 have been prepared via co-precipitation and high-temperature solid-state reaction. The residual lithium contents, XRD Rietveld refinement, XPS, TG-DSC, and electrochemical measurements are carried out. After secondly treating process, residual lithium contents decrease drastically, and occupancy of Ni in 3a site is much lower and Li/Ni disorder decreases. The discharge capacity is 193.1, 189.7, and 182 mAh g?1 at 0.1 C rate, respectively, for LiNi0.8Mn0.1Co0.1O2-AP, -NT, and -CT electrodes between 3.0 and 4.2 V in pouch cell. The capacity retention has been greatly improved during gradual capacity fading of cycling at 1 C rate. The noticeably improved thermal stability of the samples after being treated can also be observed.  相似文献   

19.
One-dimensional Co2+-doped Li4Ti5O12 nanofibers with a diameter of approximately 500 nm have been synthesized via a one-step controllable electrospinning method. The Co2+-doped Li4Ti5O12 nanofibers were systematically characterized by XRD, ICP, TEM, SEM, BET, EDS mapping, and XPS. Based on the cubic spinel structure and one-dimensional effect of Li4Ti5O12, Co2+-doped Li4Ti5O12 nanofibers exhibit the enlarged lattice volume, reduced particle size and enhanced electrical conductivity. More importantly, Co2+-doped Li4Ti5O12 nanofibers as a lithium ion battery anode electrode performs superior electrochemical performance than undoped Li4Ti5O12 electrode in terms of electrochemical measurements. Particularly, the reversible capacity of Co2+-doped Li4Ti5O12 electrode reaches up to 140.1 mAh g?1 and still maintains 136.5 mAh g?1 after 200 cycles at a current rate of 5 C. Therefore, one-dimensional Co2+-doped Li4Ti5O12 nanofiber electrodes, showing high reversible capacity and remarkable recycling property, could be a potential candidate as an anode material.  相似文献   

20.
To improve the electrochemical performance of Nickel-rich cathode material LiNi0.8Co0.1Mn0.1O2, an in situ coating technique with Li2ZrO3 is successfully applied through wet chemical method, and the thermoelectrochemical properties of the coated material at different ambient temperatures and charge-discharge rates are investigated by electrochemical-calorimetric method. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests demonstrate that the Li2ZrO3 coating decreases the electrode polarizatoin and reduces the charge transfer resistance of the material during cycling. Moreover, it is found that with the ambient temperatures and charge-discharge rates increase, the specific capacity decreases, the amount of heat increases, and the enthalpy change (ΔH) increases. The specific capacity of the cells at 30 °C are 203.8, 197.4, 184.0, and 174.5 mAh g?1 at 0.2, 0.5, 1.0, and 2.0 C, respectively. Under the same rate (2.0 C), the amounts of heat of the cells are 381.64, 645.32, and 710.34 mJ at 30, 40, and 50 °C. These results indicate that Li2ZrO3 coating plays an important role to enhance the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 and reveal that choosing suitable temperature and current is critical for solving battery safety problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号