首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this work we present results for the speciation of the ternary complexes formed in the aqueous vanadium(III)–dipicolinic acid and the amino acids cysteine (H2cys), histidine (Hhis), aspartic acid (H2asp) and glutamic acid (H2glu) systems (25 °C; 3.0 mol⋅dm−3 KCl as ionic medium), determined by means of potentiometric measurements. The potentiometric data were analyzed with the least-squares program LETAGROP, taking into account the hydrolysis of vanadium(III), the acid-base reactions of the ligands, and the binary complexes formed. Under the experimental conditions (vanadium(III) concentration = 2–3 mmol⋅dm−3 and vanadium(III): dipicolinic acid: amino acid molar ratio 1:1:1, 1:1:2 and 1:2:1), the following species [V(dipic)(H2asp)]+, [V(dipic)(Hasp)], [V(dipic)(asp)], [V(dipic)(asp)(OH)]2−, and [V(dipic)(asp)(OH)2]3− were found in the vanadium(III)–dipicolinic acid–aspartic acid system. In the vanadium(III)–dipicolinic acid–glutamic acid system [V(Hdipic)(H2glu)]2+, [V(dipic)(H2glu)]+, [V(dipic)(Hglu)], [V(dipic)(Hglu)(OH)], and [V(dipic)(Hglu)(OH)2]2− were observed. In the vanadium(III)–dipicolinic acid–cysteine system the complexes [V(dipic)(H2cys)]+, [V(dipic)(Hcys)], [V(dipic)(cys)], and [V(dipic)(cys)(OH)]2− were present. And finally, in the vanadium(III)–dipicolinic acid–histidine system the complexes [V(Hdipic)(Hhis)]2+, [V(dipic) (Hhis)]+[\mathrm{V}(\mathrm{dipic}) (\mathrm{Hhis})]^{+}, [V(dipic)(his)], [V(dipic)(his)(OH)], and [V(dipic)(his)(OH)2]2− were observed. The stability constants of these complexes were determined. The species distribution diagrams as a function of pH are briefly discussed.  相似文献   

2.
Mononuclear Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), Pt(IV), Au(III), and Pd(II) complexes of the drug amlodipine besylate (HL) have been synthesized and characterized by elemental analysis, spectroscopic technique (IR, UV–Vis, solid reflectance, scanning electron microscopy, X-ray powder diffraction, and 1H-NMR) and magnetic measurements. The elemental analyses of the complexes are confirmed by the stoichiometry of the types [M(HL)(X)2(H2O)]·nH2O [M = Mn(II), Co(II), Zn(II), Ni(II), Mg(II), Sr(II), Ba(II), and Ca(II); X = Cl? or NO3 ?], [Cd(HL)(H2O)]Cl2, [Pd(HL)2]Cl2, [Pt(L)2]Cl2, and [Au(L)2]Cl, respectively. Infrared data revealed that the amlodipine besylate drug ligand chelated as monobasic tridentate through NH2, oxygen (ether), and OH of besylate groups in Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), and Au(III) complexes, but in Pt(IV) and Pd(II) complexes, the amlodipine besylate coordinates via NH2 and OH (besylate) groups. An octahedral geometry is proposed for all complexes except for the Cd(II), Pt(IV), and Pd(II) complexes. The amlodipine besylate free ligand and the transition and non-transition complexes showed antibacterial activity towards some Gram-positive and Gram-negative bacteria and the fungi (Aspergillus flavus and Candida albicans).  相似文献   

3.
The IR spectra of Ni(II) complexes with ethylnitrosolic acid [HL] and/or hydroxyacetamidoxime [H(H2L)] are reported. Isotopic substitutions such as H/D and 62Ni/58Ni have been carried out. On the basis of the known crystal structure of [Ni(H2L)L], the IR spectra of [Ni(H2L)L], M1[Ni(HL)L] (with M1 = Cs or K), [Ni(H2L)2] and[NiL2] are compared and some assignments are proposed. Assumptions on coordinate bonding in the compounds of unknown structure are made.  相似文献   

4.
Complex formation processes of rhodium(III)-η5-pentamethylcyclopentadienyl cation [RhCp*(H2O)3]2+ with 1,2-dimethyl-3-hydroxy-pyridin-4(1H)-one (deferiprone, dhp) and pyridine-2-carboxylic acid (pic) were studied with the aid of pH-potentiometry, 1H NMR, and UV–Visible spectrophotometry in aqueous solution in the presence and absence of chloride ions. Stoichiometry and overall stability constants of the complexes formed were determined. Formation of mononuclear, monoligand complexes such as [RhCp*(L)Z] (where L = dhp or pic; Z = Cl? or H2O) and mixed hydroxido species [RhCp*(L)(OH)] were found. Relatively high pKa values (9.32–11.90) were determined for the hydrolysis of the [RhCp*(L)Z] complexes. [RhCp*(L)Z] species predominate at physiological pH and negligible decomposition is probable only at low micromolar concentrations. More favored complex formation was found in the case of pic. Stability of the studied organorhodium complexes was compared with analogous Ru(II)(η6-p-cymene) compounds. In addition, the aqua/chlorido ligand replacement reaction in [RhCp*(L)(H2O)]+ of dhp and pic was monitored to provide equilibrium constants with which the extent of aquation at various chloride concentrations can be estimated. Single crystals of [RhCp*(dhp)Cl] suitable for X-ray diffraction analysis were also obtained. The [RhCp*(L)Cl] complexes of dhp and pic were tested for cytotoxicity in various human cancer cell lines where they showed activity depending on the attached ligand scaffold.  相似文献   

5.
《中国化学会会志》2018,65(9):1060-1074
Four divalent metal(II) complexes, namely [Co(II)L(H2O)Cl]·2H2O, [Ni(II)L(H2O)Cl]·4H2O, [Cu(II)L(H2O)Cl]·3H2O, and [Zn(II)L(H2O)Cl]·5H2O, {L = 2‐furan‐2‐ylmethyleneamino‐phenyl‐iminomethylphenol}, were synthesized and characterized by several techniques. The molar conductance measurement of all analyzed complexes in DMSO showed their non‐electrolytic nature. The new Schiff base ligand (HL) acts as tetradentate ligand, coordinated through deprotonated phenolic oxygen, furan ring oxygen, and two azomethine nitrogen atoms. The ligand field parameters were measured for the metal complexes, which were found to be in the range notified for an octahedral structure. The molecular structural parameters of the synthesized HL ligand and its related metal(II) complexes were calculated and correlated with the experimental parameters such as infrared (IR) data. The investigated ligand and metal complexes were screened for their in vitro antimicrobial activities against different types of fungal and bacterial strains. The resulting data confirmed the examined compounds as a highly promising bactericides and fungicides. The antitumor activities of all inspected compounds were evaluated against colon carcinoma (HCT‐116) and mouse myelogenous leukemia carcinoma (M‐NFS‐60) cell lines. The inhibition effect of HL ligand and its isolated complexes on the corrosion carbon in the form of a rod of area 0.35 cm2 in HCl was investigated by measuring the weight loss at 25 °C.  相似文献   

6.
Ternary complex species formed by the V3+ cation with the picolinic acid (Hpic, HL) and dipicolinic acid (H2dipic, H2L) ligands in aqueous solutions have been studied potentiometrically (25 °C, I=3.0 mol⋅dm−3 KCl ionic medium) and by spectrophotometric measurements. Application of the least-squares computer program LETAGROP to the experimental emf (H) data, taking into account the hydrolytic V(III) species and the binary V3+–picolinic acid and V3+–dipicolinic acid complexes, shows that under the investigated conditions the following ternary complexes are formed: [V(dipic)(pic)], [V(dipic)(pic)(OH)] and [V(dipic)(pic)2]. The stability constants of the ternary complexes were determined by potentiometric measurements whereas the spectrophotometric measurements were done in order to obtain a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

7.
Summary The reaction of warm alcoholic solutions of acetates of CoII, MnII, ZnII and NiII with 2, 6-diacetylpyridine andS-methylisothiosemicarbazide hydrogen iodide yielded the complexes: [Co(H2L)I2]·H2O, [Mn(H2L)(MeOH)2]I2, [Zn(H2L)(MeOH)I]I and [Ni(HL)]I, (H2L=the pentadentate pentaaza-ligand 2, 6-diacetylpyridine bis(S-methylisothiosemicarbazone)). The reaction of methanolic solutions of [Ni(HL)]I and NH4NCS or LiOAc.2H2O, give [Ni(HL)]NCS and NiL, respectively. For the complexes of CoII, MnII and ZnII, a pentagonal bipyramidal configuration is proposed, with H2L in the equatorial plane and two unidentate ligands (I and/or MeOH) in the axial positions. The complexes [Ni(HL)]X (X=I or NCS) and NiL probably have monomeric five- and dimeric six-coordinate structures, respectively, in which only the chelate ligand is involved in coordination.  相似文献   

8.
In this paper we report the formation of binary and ternary nickel(II) complexes involving dipicolinic acid (H2Dipic) as the primary ligand and some selected amino acids {glycine (HGly), ?-alanine (H?-Ala), ??-alanine (H??-Ala) and proline (HPro)} as secondary ligands. These complexes were studied at 25?°C by means of electromotive force measurements, emf(H), using 1.0?mol?dm?3 NaCl as the ionic medium. The experimental data were analyzed by means of the computational least-squares program LETAGROP, taking into account hydrolysis of the nickel(II) cation and the acid/base reactions of the ligands whose equilibrium constants were kept fixed during the analysis. In the study of the binary nickel(II)?Camino acids systems the species [NiL]+, NiL2 and [NiL3]? were observed, and in the case of the ternary nickel(II)?Cdipicolinic acid?Camino acids systems the complexes Ni(Dipic)HL, [Ni(Dipic)L] ? and [Ni(Dipic)L(OH)]2? were observed. The respective stability constants were determined, and the species distribution diagrams, as a function of pH, are briefly discussed.  相似文献   

9.
In this work, the ternary complex formation among copper(II), 6-methylpicolinic acid (H6Mepic) as primary ligand, and the amino acids aspartic acid (H2Asp), glutamic acid (H2Glu) and histidine (HHis) as secondary ligands, were studied in aqueous solution at 25 °C using 1.0 mol·dm?3 KNO3 as the ionic medium. Analysis of the potentiometric data using the least squares computational program LETAGROP indicates formation of the species [Cu(6Mepic)]+, Cu(6Mepic)(OH), [Cu(6Mepic)(OH)2]?, Cu(6Mepic)2 and [Cu(6Mepic)3]? in the binary Cu(II)–H6Mepic system. In the ternary Cu(II)–H6Mepic–H2Asp system the complexes [Cu(6Mepic)(H2Asp)]+, Cu(6Mepic)(HAsp), [Cu(6Mepic)(Asp)]? and [Cu(6Mepic)(Asp)(OH)]2? were observed. In the case of the Cu(II)–H6Mepic–H2Glu system the complexes Cu(6Mepic)(HGlu), [Cu(6Mepic)(Glu)]?, [Cu(6Mepic)(Glu)(OH)]2? and [Cu(6Mepic)(glu)(OH)2]3? were detected. Finally, in the Cu(II)–H6Mepic–HHis system the complexes [Cu(6Mepic)(HHis)]+, Cu(6Mepic)(His) and [Cu(6Mepic)(His)(OH)]? were observed. The species distribution diagrams as a function of pH are briefly discussed.  相似文献   

10.
In this article, we present the results of the speciation of the binary nickel(II)-oxalic acid (H2L) and nickel(II)-malonic acid (H2L) systems studied by electromotive forces measurements emf (H) using 1.0?mol?dm?3 NaCl as the ionic medium at 25°C. The experimental data were analyzed by a computational least-squares program LETAGROP/FONDO, a version of the LETAGROP program, written to analyze regular formation function and reduced formation functions, taking into account the hydrolysis of the nickel(II) cation and the acid base reactions of the ligands which were kept fixed during the analysis. In the nickel(II)-oxalic acid system the complexes [NiHL]+, [NiL], [Ni(OH)L]?, and [NiL2]2? were observed and for the nickel(II)-malonic acid system the complexes [NiHL]+, [NiL], [Ni(OH)L]?, and [Ni(OH)2L]2? were detected. The stability constants were determined and the species distribution diagrams as a function of pH are briefly discussed.  相似文献   

11.
The monomer 3‐allyl‐5‐(phenylazo)‐2‐thioxothiazolidine‐4‐one (HL) was prepared by the reaction of allyl rhodanine with aniline through diazo‐coupling reaction. Reaction of HL with Ni(II) or Co(II) salts gave polymer complexes ( 1 – 8 ) with general stoichiometries [M(HL)(Cl)2(OH2)2]n, [M(HL)(O2SO2)(OH2)2]n, [M(L)(O2NO)(H2O)2]n and [M(L)(O2CCH3)(H2O)2]n (where M = Ni(II) or Co(II)). The structures of the polymer complexes were identified using elemental analysis, infrared and electronic spectra, molar conductance, magnetic susceptibility, X‐ray diffraction and thermogravimetric analysis. The interaction between the polymer complexes and calf thymus DNA showed a hypochromism effect. HL and its polymer complexes were tested against bacterial and fungal species. Co(II) polymer complex 2 is the most effective against Klebsiella pneumoniae and is more active than penicillin. The results showed that Ni(II) polymer complex 5 is a good antibacterial agent against Staphylococcus aureus and Pseudomonas aeruginosa. Molecular docking was used to predict the binding between the monomer with the receptors of prostate cancer (PDB code: 2Q7L Hormone) and breast cancer (PDB code: 1JNX Gene regulation). Coats–Redfern and Horowitz–Metzger methods were applied for calculating the thermodynamic parameters of HL and its polymer complexes. The thermal activation energy of decomposition for HL is higher than that for the polymer complexes.  相似文献   

12.
The complex species formed in aqueous solution (25 C, I = 3.0 mol-dm−3 KCl ionic medium) between V3+ cation and the ligands: picolinic acid (Hpic, HL) and dipicolinic acid (H2dipic, H2L), have been studied potentiometrically and by spectrophotometric measurements. The application of the least-squares computer program LETAGROP to the experimental emf (H) data, taking into account the hydrolytic species of V3+ ion, indicates that under the employed experimental conditions, the formation of the complexes [VL]2+, [V(OH)L]+, [VL2]+, [VL3], [V2OL4] with picolinic acid and the complexes [VL]+, [V(OH)L], [V(OH)2L], [V(HL)(L)], and [VL2] with dipicolinic acid were observed. The stability constants of the complexes formed were determined by potentiometric measurements, and spectrophotometric measurements were done in order to perform a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

13.
Several complexes of 5,8-diethyl-7-hydroxy-6-dodecanone oxime [H2L] with Cu(II) and Ni(II) have been synthesized and characterized by means of a number of techniques including elemental analysis, IR spectra, magnetic susceptibility measurements, electronic absorption spectra, NMR spectra, and mass spectra. The results indicate that Cu(II) and Ni(II) generally form analogous, isomorphous complexes, although no bis-[H2L] complex with Cu(II) has been isolated. [Cu(L)]n and [Ni(L)]n are oligomeric complexes with pseudo-octahedral geometry. [Ni(HL)2] is cis-square-planar (C) with bifurcated hydrogen bridges. [Ni(H2L)3SO4] and [Cu(H2L)3SO4] have octahedral symmetry in which the sulphate is coordinated as a unidentate ligand and the oxime is functioning as a neutral ligand.  相似文献   

14.

Reactions of 2-hydroxyimino-1-methylpropylidene (acetyl-) and (benzoylhydrazine) with copper(II) chloride, nitrate and acetate were studied. Three types of copper(II) complexes of general formula [Cu(H2L)Cl2], [{Cu(HL)}2][sdot]2NO3[sdot]nH2O and [{Cu(L)}2], where H2L, HL, and L refer, respectively, to the neutral, monoanionic and dianionic ONN tridentate acylhydrazoneoxime ligands, were isolated and characterized. Variable-temperature magnetic susceptibility measurements for [Cu(H2L)Cl2] suggest Curie-Weiss behavior. Both [{Cu(HL)}2][sdot]2NO3[sdot]nH2O and [{Cu(L)}2] show strong antiferromagnetic exchange coupling with ? 2J values of 898-934 and 718-757 cm?1, respectively, indication dimeric structures with oximate bridges.  相似文献   

15.
Polymer complexes of Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) were prepared by the reaction of 3‐allyl‐5‐[(4‐nitrophenylazo)]‐2‐thioxothiazolidine‐4‐one (HL) with metal ions. The structure of polymer complexes was characterized by elemental analysis, IR, UV–Vis spectra, X‐ray diffraction analysis, magnetic susceptibility, conductivity measurements and thermal analysis. Reaction of HL with Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) ions (acetate or chloride) give polymer complexes ( 1–5 ) with general stoichiometric [M(L)(O2CCH3)(H2O)2]n (where L = anionic of HL and M = Co(II) (1) or Ni(II) (2) ), [Mn(HL)2(OCOCH3)2]n (3) , [Cr(L)2(Cl)(H2O)]n (4) and [Cd(HL)(O2CCH3)2]n (5) . The value of HOMO–LUMO energy gap (ΔE) for forms (A‐C) of monomer (HL) is 2.529, 2.296 and 2.235 eV, respectively. According to ΔE value, compound has minimum ΔE is the more stable, so keto hydrazone form (C) is more stable than the other forms (azo keto form (A), azo enol form (B)). The interaction between HL, polymer complexes of Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) with Calf thymus DNA showed hypochromism effect. The HL and its polymer complexes were tested against some bacterial and fungal species. The results showed that the Cr(III) polymer complex (4) has more antibacterial activity than HL and polymer complexes (1–3 and 5) against Bacillus subtilis, Staphylococcus aureus and Salmonella typhimurium.  相似文献   

16.
Summary New complexes of general formulae [Ni(HL)2], [ML]·H2O and [Cu(HL)X] (H2L = pyrrole-2-aldehyde Schiff bases ofS-methyl- andS-benzyldithiocarbazates; X = Cl or Br; M = NiII, CuII, ZnII or CdII) were prepared and characterized by a variety of physicochemical techniques. The Schiff bases coordinate as NS bidentate chelating agents in [Ni(HL)2] and [Cu(HL)X], and as tridentate NNS chelates in [ML] (M = NiII, CuII, ZnII or CdII). Both the [Ni(HL)2] and [NiL] complexes are diamagnetic and square-planar. Based on magnetic and spectroscopic evidence, thiolate sulphur-bridged dimeric square-planar structures are assigned to the [Cu(HL)X] and [ML] (M = NiII or CuII) complexes. The complexes ML (M = ZnII or CdII) are polymeric and octahedral.  相似文献   

17.
[M(HL)2] complexes (M = Co(II) (1), Ni(II) (2), and Cu(II) (3); H2L = 4-hydroxybenzoic[(5-nitro-2-furanyl)methylene]hydrazide acid, nifuroxazide) were synthesized, characterized (by elemental analysis, TG, IR, UV–vis., EPR, magnetic, and conductance measurements) and tested for their antimicrobial activities. H2L is a mono-negative bidentate ligand via hydrazone N and C–O? forming intermediate complexes between tetrahedral and square-planar geometries (“flattened” tetrahedron, D2d symmetry) for 1 and 2, as well as square-planar for Cu(II) complex 3. Natural bond orbital analysis revealed that the interaction of oxygen with metal ion is the main factor which determines the stability of 13 as the binding energy decreases with an increase in the M–O bond length. Time-dependent density functional theory calculations were carried out to understand the electronic transitions in related experimental observations. The reduction potential values of the nitro group are affected by the metal center. Ni(II) complex 2 displayed the highest activity among the tested complexes against Escherichia coli with a MIC50 value of 0.098 μmol mL?1 compared with 0.131 (1) and 0.117 μmol mL?1 (3).  相似文献   

18.
Piperanol thiosemicarbazone (HL) has been interacted with Ag+, Co(II), Ni(II) or Cu(II) binary to produce [Ag(HL)]EtOH · NO3, [Ag2(L)(H2O)2]NO3, [Co(L)3], [Cu(L)(H2O)3(OAc)]H2O or [Ni(L)2] and template with Ag+ to form [Cu2Ag2(L)2(OH)2(H2O)4]NO3 and [NiAg(L)2(H2O)2]NO3. The prepared complexes are characterized by microanalysis, thermal, magnetic and spectral (IR, 1H NMR, ESR and electronic) studies. Ag+ plays an important role in the complex formation. The variation in coordination may be due to the presence of two different metal ions and the preparation conditions. The outside nitrate is investigated by IR spectra. The outer sphere solvents are detected by IR and thermal analysis. Ni(II) complexes are found diamagnetic having a square-planar geometry. Cu(II) is reduced by the ligand to Cu(I). The cobalt complex is found diamagnetic confirming an air oxidation of Co(II) to Co(III) having a low spin octahedral geometry. The ligand and its metal complexes are found reducing agents which decolorized KMnO4 solution in 2N H2SO4. CoNS and NiNS are the residual parts in the thermal decomposition of [Co(L)3] and [Ni(L)2].  相似文献   

19.
An asymmetric dinuclear ligand, N-4-methyl-homopiperazine-N′-[N-(2-pyridylmethyl)-N-2-(2-pyridylethyl)amine]-1,3-diaminopr-opan-2-ol (HL) and two dinuclear Ni(II) complexes [Ni2L(DNBA)2]ClO4 (1) and [Ni2L(BPP)2]ClO4·2H2O (2) (3,5-dinitrobenzoic acid, bisphenyl phosphate) have been synthesized and characterized. Single crystal X-ray crystallographic analysis reveals that the coordination environments of the two Ni(II) atoms in complexes 1 and 2 are five and six coordinate, respectively. The phosphodiesterase activity of a di-Ni(II) complex Ni2L formed in situ from a 2:1 mixture of Ni2+ and HL was investigated using bis(4-nitrophenyl) phosphate (BNPP) as the substrate. The pH dependence of the rate of BNPP cleavage in aqueous buffer indicates a bell-shaped profile with an optimum at about pH 8.4, which is parallel to the formation of the dinuclear species [Ni2LOH]2+ according to UV–vis spectroscopy. At pH 8.4 and 25 °C, the k cat (7.40 × 10?5 s?1) is ca.106-fold higher than that of the uncatalyzed reaction. A possible mechanism for BNPP cleavage promoted by Ni2L is proposed.  相似文献   

20.
The two new nickel(II) complexes, [Ni(HL)(L)](NO3)?H2O (1) and [Ni(L)2] (2) (where HL/L = N′-[(E)-phenyl(pyridin-2-yl)methylidene]benzohydrazide), have been synthesized and characterized by elemental analysis, spectroscopic, magnetic susceptibility, and cyclic voltammetric measurements. Single-crystal X-ray analysis of [Ni(HL)(L)](NO3)?H2O (1) and [Ni(L)2] (2) has revealed the presence of a distorted octahedral geometry around nickel(II). The X-ray and spectral characterizations have confirmed the existence of the keto-enol form of the ligands in the complexes. The electronic structures and spectral properties of the ligands and the complexes have been explained by DFT and TDDFT calculations. Superoxide dismutase activity of these complexes has also been measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号