首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this paper, the unsteady three‐dimensional boundary layer flow due to a stretching surface in a viscous and incompressible micropolar fluid is considered. The partial differential equations governing the unsteady laminar boundary layer flow are solved numerically using an implicit finite‐difference scheme. The numerical solutions are obtained which are uniformly valid for all dimensionless time from initial unsteady‐state flow to final steady‐state flow in the whole spatial region. The equations for the initial unsteady‐state flow are also solved analytically. It is found that there is a smooth transition from the small‐time solution to the large‐time solution. The features of the flow for different values of the governing parameters are analyzed and discussed. The solutions of interest for the skin friction coefficient with various values of the stretching parameter c and material parameter K are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The solution to the unsteady mixed convection boundary layer flow and heat transfer problem due to a stretching vertical surface is presented in this paper. The unsteadiness in the flow and temperature fields is caused by the time-dependent of the stretching velocity and the surface temperature. The governing partial differential equations with three independent variables are first transformed into ordinary differential equations, before they are solved numerically by a finite-difference scheme. The effects of the unsteadiness parameter, buoyancy parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Both assisting and opposing buoyant flows are considered. It is observed that for assisting flow, the solutions exist for all values of buoyancy parameter, whereas for opposing flow, they exist only if the magnitude of the buoyancy parameter is small. Comparison with known results for steady-state flow is excellent.  相似文献   

3.
The induced unsteady flow due to a stretching surface in a rotating fluid, where the unsteadiness is caused by the suddenly stretched surface is studied in this paper. After a similarity transformation, the unsteady Navier–Stokes equations have been solved numerically using the Keller-box method. Also, the perturbation solution for small times as well as the asymptotic solution for large times, when the flow becomes steady, has been obtained. It is found that there is a smooth transition from the small time solution to the large time or steady state solution.  相似文献   

4.
The unsteady laminar magnetohydrodynamics(MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse magnetic field with heat source/sink. The unsteady governing equations are solved by a shooting method with the Runge-KuttaFehlberg scheme. Three different types of water based nanofluids, containing copper, aluminium oxide, and titanium dioxide, are taken into consideration. The effects of the pertinent parameters on the fluid velocity, the temperature, the entropy generation number, the Bejan number, the shear stress, and the heat transfer rate at the sheet surface are graphically and quantitatively discussed in detail. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. It is observed that the presence of the metallic nanoparticles creates more entropy in the nanofluid flow than in the regular fluid flow.  相似文献   

5.
The unsteady viscous flow over a continuously permeable shrinking surface is studied. Similarity equations are obtained through the application of similar transformation techniques. Numerical techniques are used to solve the similarity equations for different values of the unsteadiness parameter, the mass suction parameter, the shrinking parameter and the Prandtl number on the velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number. It is found that, different from an unsteady stretching sheet, dual solutions exist in a certain range of mass suction and unsteadiness parameters.  相似文献   

6.
The steady nonlinear hydromagnetic flow of an incompressible, viscous and electrically conducting fluid with heat transfer over a surface of variable temperature stretching with a power-law velocity in the presence of variable transverse magnetic field is analysed. Utilizing similarity transformation, governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations and they are numerically solved using fourth-order Runge–Kutta shooting method. Numerical solutions are illustrated graphically by means of graphs. The effects of magnetic field, stretching parameter and Prandtl number on velocity, skin friction, temperature distribution and rate of heat transfer are discussed.  相似文献   

7.
In this paper, the steady magnetohydrodynamic (MHD) mixed convection boundary layer flow of an incompressible, viscous and electrically conducting fluid over a stretching vertical flat plate is theoretically investigated with Hall effects taken into account. The governing equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of the magnetic parameter, the Hall parameter and the buoyancy parameter on the velocity profiles, the cross flow velocity profiles and the temperature profiles are presented graphically and discussed. Investigated results indicate that the Hall effect on the temperature is small, and the magnetic field and Hall currents produce opposite effects on the shear stress and the heat transfer at the stretching surface.  相似文献   

8.
In this paper, viscous flow and heat transfer over an unsteady stretching surface is investigated with slip conditions. A system of non-linear partial differential equations is derived and transformed to ordinary differential equations with help of similarity transformations. Numerical computations are carried out for different values of the parameters involved and the analysis of the results obtained shows that the flow field is influenced appreciably by the unsteadiness, and the velocity slip parameter. With increasing values of the unsteadiness parameter, fluid velocity and the temperature are found to decrease in both the presence and absence of slip at the boundary. Fluid velocity decreases due to increasing values of the velocity slip parameter resulting in an increase in the temperature field. Skin-friction decreases with the velocity slip parameter whereas it increases with unsteadiness parameter. The rate of heat transfer decreases with the velocity slip parameter while increases with unsteadiness parameter. Same feature is also noticed for thermal slip parameter.  相似文献   

9.
This article concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching sheet. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet, the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. Impact of thermophoresis particle deposition in the presence of temperature-dependent fluid viscosity plays an important role on the concentration boundary layer. The results, thus, obtained are presented graphically and discussed.  相似文献   

10.
The influence of thermal radiation on the flow and heat transfer within Newtonian liquid film over an unsteady stretching sheet with and without thermocapillarity is examined. The governing non‐linear partial differential equations describing the problem are reduced to a system of nonlinear ordinary differential equations using similarity transformation, which is solved numerically for different values of the thermal radiation parameter and the thermocapillarity parameter. The results show that the dimensionless velocity, the film thickness and the local Nusselt number increase as the thermocapillarity parameter increases, while the free surface temperature decreases with increasing the thermocapillarity parameter. Also, both the dimensionless temperature and the free surface temperature increase and the local Nusselt number decreases as the thermal radiation parameter increases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
An analysis is presented to investigate the flow and heat transfer characteristics of a vertical stretching surface with suction and blowing, and variable magnetic effects. The magnetic field of variable intensity is applied perpendicular to the surface. The range of the magnetic parameter M investigated is 0.1 to 1.0. The flow is considered steady, incompressible, and three-dimensional. The governing momentum and energy equations are solved numerically. Numerical results are presented for velocity distribution, temperature distribution, surface shear stress, and wall heat transfer rate. Discussion is provided for the effect of the magnetic field strength on the velocity and temperature fields. Received on 26 November 1997  相似文献   

12.
This paper investigates the problem of hydrodynamic boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface.The study considers the effects of frictional heating(viscous dissipation) and internal heat generation or absorption.The basic equations governing the flow and heat transfer are reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformations.The transformed equations are numerically solved by the Runge-Kutta-Fehlberg-45 order method.An analysis is carried out for two different cases of heating processes,namely,variable wall temperature(VWT) and variable heat flux(VHF).The effects of various physical parameters such as the magnetic parameter,the fluid-particle interaction parameter,the unsteady parameter,the Prandtl number,the Eckert number,the number density of dust particles,and the heat source/sink parameter on velocity and temperature profiles are shown in several plots.The effects of the wall temperature gradient function and the wall temperature function are tabulated and discussed.  相似文献   

13.
The unsteady laminar flow of an incompressible micropolar fluid over a stretching sheet is investigated. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. Effects of the unsteadiness parameter, material parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined.  相似文献   

14.
A complete first-order model and locally analytic solution method are developed to analyse the effects of mean flow incidence and aerofoil camber and thickness on the incompressible aerodynamics of an oscillating aerofoil. This method incorporates analytic solutions, with the discrete algebraic equations which represent the differential flow field equations obtained from analytic solutions in individual grid elements. The velocity potential is separated into steady and unsteady harmonic parts, with the unsteady potential further decomposed into circulatory and non-circulatory components. These velocity potentials are individually described by Laplace equations. The steady velocity potential is independent of the unsteady flow field. However, the unsteady flow is coupled to the steady flow field through the boundary conditions on the oscillating aerofoil. A body-fitted computational grid is then utilized. Solutions for both the steady and the coupled unsteady flow fields are obtained by a locally analytic numerical method in which locally analytic solutions in individual grid elements are determined. The complete flow field solution is obtained by assembling these locally analytic solutions. This model and solution method are shown to accurately predict the Theodorsen oscillating flat plate classical solution. Locally analytic solutions for a series of Joukowski aerofoils demonstrate the strong coupling between the aerofoil unsteady and steady flow fields, i.e. the strong dependence of the oscillating aerofoil aerodynamics on the steady flow effects of mean flow incidence angle and aerofoil camber and thickness.  相似文献   

15.
An analysis is carried out to study the unsteady two-dimensional Powell-Eyring flow and heat transfer to a laminar liquid film from a horizontal stretching surface in the presence of internal heat generation. The flow of a thin fluid film and subsequent heat transfer from the stretching surface is investigated with the aid of a similarity transformation. The transformation enables to reduce the unsteady boundary layer equations to a system of nonlinear ordinary differential equations. A numerical solution of the resulting nonlinear differential equations is found by using an efficient Chebyshev finite difference method. A comparison of numerical results is made with the earlier published results for limiting cases. The effects of the governing parameters on the flow and thermal fields are thoroughly examined and discussed.  相似文献   

16.
This paper is concerned with two-dimensional stagnation-point steady flow of an incompressible viscous fluid towards a stretching sheet whose velocity is proportional to the distance from the slit. The governing system of partial differential equations is first transformed into a system of dimensionless ordinary differential equations. Analytical solutions of the velocity distribution and dimensionless temperature profiles are obtained for different ratios of free stream velocity and stretching velocity, Prandtl number, Eckert number and dimensionality index in series forms using homotopy analysis method(HAM). It is shown that a boundary layer is formed when the free stream velocity exceeds the stretching velocity, and an inverted boundary layer is formed when the free stream velocity is less than the stretching velocity. Graphs are presented to show the effects of different parameters.  相似文献   

17.
The article examines the unsteady mixed convection flow over a vertical stretching sheet in the presence of chemical reaction and heat generation or absorption with non-uniform mass transfer. The unsteadiness is caused by the time dependent free stream velocity varying arbitrarily with time. Non-similar solutions are obtained numerically by solving the coupled nonlinear partial differential equations using the quasilinearization technique in combination with an implicit finite difference scheme. To reveal the tendency of the solutions, typical results for the local skin friction coefficient and the local Nusselt and Sherwood numbers are presented for different values of parameters. The effects of various parameters on the velocity, temperature, and concentration distributions are discussed here. The present numerical results are compared with the previously published work, and the results are found to be in excellent agreement.  相似文献   

18.
An unsteady double diffusive mixed convection boundary layer flow over a vertically stretching sheet in the presence of suction/injection is investigated in this paper. The governing partial differential equations are reduced by applying suitable transformations to a set of nonlinear ordinary differential equations, which is solved by the Keller box method. The influence of various flow parameters on the velocity, temperature, and species concentration profiles of the fluid is studied. The effect of some problem parameters on the skin friction coefficient in the presence of suction/injection is considered.  相似文献   

19.
The boundary-layer equations for two-dimensional steady flow of an incompressible, viscous fluid near a stagnation point at a heated stretching sheet placed in a porous medium are considered. We apply Lie-group method for determining symmetry reductions of partial differential equations. Lie-group method starts out with a general infinitesimal group of transformations under which the given partial differential equations are invariant. The determining equations are a set of linear differential equations, the solution of which gives the transformation function or the infinitesimals of the dependent and independent variables. After the group has been determined, a solution to the given partial differential equations may be found from the invariant surface condition such that its solution leads to similarity variables that reduce the number of independent variables of the system. The effect of the velocity parameter λ, which is the ratio of the external free stream velocity to the stretching surface velocity, permeability parameter of the porous medium k 1, and Prandtl number Pr on the horizontal and transverse velocities, temperature profiles, surface heat flux and the wall shear stress, has been studied.  相似文献   

20.
A steady two-dimensional magnetohydrodynamic stagnation-point flow of an electrically conducting fluid and heat transfer with thermal radiation of a nanofluid past a shrinking and stretching sheet is investigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis. A similarity transformation is used to convert the governing nonlinear boundary-layer equations into coupled higher-order nonlinear ordinary differential equations. The result shows that the velocity, temperature, and concentration profiles are significantly influenced by the Brownian motion, heat radiation, and thermophoresis particle deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号