首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The arrangement of DNA‐based nanostructures into extended higher order assemblies is an important step towards their utilization as functional molecular materials. We herein demonstrate that by electrostatically controlling the adhesion and mobility of DNA origami structures on mica surfaces by the simple addition of monovalent cations, large ordered 2D arrays of origami tiles can be generated. The lattices can be formed either by close‐packing of symmetric, non‐interacting DNA origami structures, or by utilizing blunt‐end stacking interactions between the origami units. The resulting crystalline lattices can be readily utilized as templates for the ordered arrangement of proteins.  相似文献   

2.
3.
Herein, we report a strategy for the synchronization of two self‐assembly processes to assemble stimulus‐responsive DNA nanostructures under isothermal conditions. We hypothesized that two independent assembly processes, when brought into proximity in space, could be synchronized and would exhibit positive synergy. To demonstrate this strategy, we assembled a ladderlike DNA nanostructure and a ringlike DNA nanostructure through two hybridization chain reactions (HCRs) and an HCR in combination with T‐junction cohesion, respectively. Such proximity‐induced synchronization adds a new element to the tool box of DNA nanotechnology. We believe that it will be a useful approach for the assembly of complex and responsive nanostructures.  相似文献   

4.
A strategy of structural transformation for the assembly of DNA nanocages that can not be assembled directly is described. In this strategy, a precursor DNA nanocage is assembled first and then is isothermally transformed into a desired, complicated nanocage. A dramatic, conformational change accompanies the transformation. This strategy has been proven to be successful by native polyacrylamide gel electrophoresis (PAGE) and cryogenic electron microscopy (cryoEM) imaging. We expect that the strategy of structural transformation will be useful for the assembly of many otherwise inaccessible DNA nanostructures and help to increase the structural complexity of DNA nanocages.  相似文献   

5.
6.
DNA governs the storage and transfer of genetic information through generations in all living systems with the exception of some viruses. Its physicochemical nature and the Watson–Crick base pairing properties allow molecular constructions at nanometer length, thereby enabling the design of desired structural motifs, which can self‐assemble to form large supramolecular arrays and scaffolds. The tailor‐made DNAs have been an interesting material for such designed nanoscale constructions. However, the synthesis of specific structures with a desired molecular function is still in its infancy and therefore has to be further explored. To add a new dimension to this approach, we have synthesized a rigid three‐way branched adamantane motif, which is capable of forming highly stable DNA networks. The moiety generated could serve as a useful building block for DNA‐based nanoconstructions.  相似文献   

7.
8.
9.
10.
An autonomous DNA nanomotor powered by a DNA enzyme   总被引:6,自引:0,他引:6  
  相似文献   

11.
DNA发夹结构自组装因具有无酶参与、等温以及识别序列能力强等优点,在生物分子和金属离子检测方面展现了良好的发展前景。该文梳理了DNA发夹结构自组装信号放大策略的类型,综述了近年来该策略在致病菌、核酸肿瘤标记物、蛋白质、无机金属离子,以及生物小分子检测中应用的研究进展,并对其未来发展趋势进行了展望,旨在为基于DNA发夹结构自组装检测生物分子提供一定的参考。  相似文献   

12.
13.
14.
15.
16.
17.
18.
通过静电沉积的方法构筑了含有脱氧核糖核酸(DNA)和重氮树脂(DAR)的交替多层膜.在紫外光照射下,这种静电沉积多层膜相邻层间DNA上的磷酸基团与DAR上的重氮基团发生反应,从而将DNA共价连接到多层膜中.利用紫外-可见吸收光谱和掠角反射吸收傅里叶变换红外光谱(GRAFTIR)研究了这种相邻层间的光化学变化.刻蚀实验结果发现,与光照前相比,光照后的膜在盐溶液中的稳定性大大增强.  相似文献   

19.
20.
Electrospray ionization mass spectrometry (ESI-MS) was utilized to investigate the formation and stability of G-quadruplexes. For the 15 6-nt oligonucleotides tested, ESI-MS indicated that formation of a parallel tetramer quadruplex requires at least four continuous guanines in the 6-nt sequence. In addition, the G-rich strands prefer to employ "self-association" in the formation of the G-quadruplex rather than hybridized integration, and the thermodynamic-stability order of these three G-quadruplexes is Q(2)>Q(1)>Q(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号