首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A magnetic composite of silver/iron oxides/carbon nanotubes (Ag/Fe3O4/CNTs) was synthesized and used as an adsorbent for the preconcentration of mercury ions in water solutions at room temperature (25°C) in this study. The silver nanoparticles were supported on the magnetic CNTs. The modification enabled the composite had not only a high adsorption capacity for mercury ions (Hg2+) but also the magnetic isolation properties. A fast, sensitive, and simple method was successfully developed for the preconcentration and determination of trace amount of Hg2+ in water using the synthesized nanocomposite as adsorbent. The mercury concentration was determined by an atomic fluorescence spectrometer (AFS). The experimental conditions such as pH value, extraction temperature, extraction time, sample volume, eluent composition and concentration, sorbent amount, and coexisting ions were investigated for the optimization. A 500 mL of sample volume resulted in a preconcentration factor of 125. When a 200 mL of sample was employed, the limit of detection for Hg2+ was as low as 0.03 ng mL?1with relative standard deviation of 4.4% at 0.1 ng mL?1 (n = 7). The ease of synthesis and separation, the good adsorption capacity, and the satisfactory recovery will possibly make the composite an attractive adsorbent for the preconcentration of ultratrace Hg2+ in waters.  相似文献   

2.
《Analytical letters》2012,45(7):1210-1223
A new magnetic adsorbent, 2,2′-thiodiethanethiol grafted with tetraethyl orthosilicate modified Fe3O4 nanoparticles, was developed for the separation and preconcentration of Hg, Pb, and Cd in environmental and food samples. The concentrations of Pb and Cd were determined by inductively coupled plasma–optical emission spectrometry; Hg was determined by cold vapor atomic absorption spectrometry. A comprehensive study on the factors affecting the extraction and desorption efficiencies was performed. Under the optimized conditions, the method was linear in the 0.01–750 ng mL?1 range (before preconcentration) with detection limits of 4, 8, and 2 ng L?1 for Hg, Pb, and Cd, respectively. Relative standard deviations of 2.3, 2.9, and 2.4% (concentration 50 ng mL?1, n = 7) and high preconcentration factors of 291, 285, and 288 were also obtained for Hg, Pb, and Cd. The accuracy of the proposed method was validated by analyzing a water certified reference material with satisfactory recoveries. The method was successfully applied to the determination of the analytes in tap and mineral waters and canned tuna fish samples.  相似文献   

3.
In this research, magnetic Fe3O4 nanoparticles were synthesised by co-precipitation method and modified with polythiophene (PT) to produce Fe3O4-PT nanoparticles for preconcentration and determination of cadmium (??) ion followed by electrothermal atomic absorption spectrometry. The results of FT-IR spectroscopy, EDX analysis and SEM images show that Fe3O4-PT nanoparticles were synthesised successfully. Different parameters such as sample pH, amounts of adsorbent, sample volume, extraction time, type and concentration of eluent and desorption time were completely investigated and optimum conditions were selected.

Under the optimum conditions, the calibration curve was linear in the range of 0.01–0.25 µg L?1 of cadmium (??). The relative standard deviation was 4.7% (n = 7, 0.10 µg L?1 Cd2+) and limit of detection was 3.30 ng L?1. The accuracy of the proposed method was verified by the analysis of a certified reference material and spike method. Finally, the proposed method was applied for the determination of ultra-trace levels of cadmium (??) in different water and food samples.  相似文献   

4.
Molecular imprinted polymer for determination of malachite green (MG) and fuchsine basic (FU) dyes by spectrophotometry has been used, to develop a novel simultaneous extraction and preconcentration method. Molecularly imprinted layer-coated nano-alumina (MIP@Nano-Al2O3) as adsorbent was prepared by surface molecular imprinting technique, and characterised by FTIR spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis (EDAX) and thermogravimetric analysis (TGA). The method is based on simultaneous extraction of MG and FU dyes from aqueous solution by using molecularly imprinted polymer and measuring the absorbance at 617 and 546 nm for MG and FU, respectively. Parameters which affect the extraction efficiency such as pH, volume of eluent and amount of adsorbent were investigated and optimised. Linear calibration curves were obtained in the range of 2–750 ng mL?1 for MG and 1–240 ng mL?1 for FU under optimum conditions. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.655 and 0.245 ng mL?1 (n = 10) for MG and FU, respectively. The relative standard deviation (RSD) for 100 ng mL?1 of MG and FU was 2.35 and 3.06% (n = 7), respectively. The method was applied to the simultaneous determination of the dyes in different seafood and environmental water samples.  相似文献   

5.
A new solid-phase extraction method for determination of palladium by atomic absorption spectrometry is described. Multiwalled carbon nanotube (MWCNT) modified with 1-butyl 3-methyl imidazolium hexafluorophosphate (MWCNT-[BMIM]PF6) and supported on sawdust was used as an adsorbent for preconcentration of palladium. Palladium ions are retained on (MWCNT-[BMIM]PF6) adsorbent as [PdI4]2? and eluted from the column with a thiosulfate–ammonia mixture. The optimum conditions for the adsorption were evaluated by changing various parameters such as pH, sample volume, concentration and volume of eluent, iodide concentration and interfering ions to achieve highest sensitivity and selectivity. The calibration graph was linear in the range of 2–120 ng mL?1 of palladium in the initial solution and the limit of detection based on 3Sb was 0.41 ng mL?1. The method was applied to the determination of palladium in water, wastewater and soil samples.  相似文献   

6.
Arsenazo III modified maghemite nanoparticles (A-MMNPs) was used for removing and preconcentration of U(VI) from aqueous samples. The effects of contact time, amount of adsorbent, pH and competitive ions was investigated. The experimental results were fitted to the Langmuir adsorption model in the studied concentration range of uranium (1.0 × 10?4–1.0 × 10?2 mol L?1). According to the results obtained by Langmuir equation, the maximum adsorption capacity for the adsorption of U(VI) on A-MMNPs was 285 mg g?1 at pH 7. The adsorbed uranium on the A-MMNPs was then desorbed by 0.5 mol L?1 NaOH solution and determined spectrophotometrically. A preconcentration factor of 400 was achieved in this method. The calibration graph was linear in the range 0.04–2.4 ng mL?1 (1.0 × 10?10–1.0 × 10?8 mol L?1) of U(VI) with a correlation coefficient of 0.997. The detection limit of the method for determination of U(VI) was 0.01 ng mL?1 and the relative standard deviation (R.S.D.) for the determination of 1.43 and 2.38 ng mL?1 of U(VI) was 3.62% and 1.17% (n = 5), respectively. The method was applied to the determination of U(VI) in water samples.  相似文献   

7.
Graphene-based magnetic nanoparticles (G-Fe3O4) were prepared and used as an effective adsorbent for the solid-phase extraction of trace quantities of cadmium from water and vegetable samples. The method avoids some of the time-consuming steps associated with traditional solid phase extraction. The excellent sorption property of the G-Fe3O4 system is attributed to π - π stacking interaction and hydrophobic interactions between graphene and the Cd-PAN complex. The effects of pH, the amount of G–Fe3O4, extraction time, type and volume of eluent, desorption time and interfering ions on the extraction efficiency were optimized. The preconcentration factor is 200. Cd(II) was then quantified by flame atomic absorption spectrometry with a detection limit of 0.32 ng mL?1. The relative standard deviation (at 50 ng mL?1; for n?=?10) is 2.45 %. The method has a linear analytical range from 1.1 to 150 ng mL?1, and the recoveries in case of real samples are in the range between 93.1 % and 102.3 %.
Figure
General procedure for magnetic preconcentration of cadmium ions from aqueous solution using graphene-based magnetic nanoparticles  相似文献   

8.
《Analytical letters》2012,45(10):1352-1367
Abstract

A simple, expeditious, and sensitive method has been developed for the determination of low-molecular-mass aldehydes in water samples by liquid chromatography and peroxyoxalate–chemiluminescence detection. The method is based on continuous solid-phase extraction with in situ derivatization/preconcentration of the aldehydes using dansylhydrazine, which was first adsorbed on an RP–C18 mini-column. For 10 mL of aqueous sample, the limits of detection (LOD) for C1 to C4 aldehydes were 20–30 ng L?1, except for formaldehyde, which had an LOD of 400 ng L?1. Application was illustrated by the determination of these aldehydes in water samples; the interday precision was always less than ca. 7%, and relative recoveries were more than 96%.  相似文献   

9.
A solid-phase extraction method for preconcentration of silver and consequent determination by atomic absorption spectrometry is described. The method is based on the retention of silver on sulfur modified with 2-mercaptobenzoxazole. The retained silver is eluted from the column with a thiourea solution and determined by flame atomic absorption spectrometry. The preconcentration conditions such as pH, amount of reagent loaded on sorbent, type of eluent and its volume, flow rate and interfering ions were investigated. The calibration graph was linear in the range of 3–200 ng mL?1 of Ag+ in the initial solution with r = 0.9985. The limit of detection based on 3Sb was 1.0 ng mL?1. The relative standard deviation for ten replicate measurements of 50 and 150 ng mL?1 of Ag+ was 4.1 and 1.4 %, respectively. The method was applied to the determination of silver in radiology film and water samples.  相似文献   

10.
A rapid and sensitive method based on magnetic solid-phase extraction coupled to high-performance liquid chromatography with ultraviolet detection was developed for the simultaneous determination of buprenorphine (BPN) and its major metabolite, norbuprenorphine (N-BPN), in human plasma samples. Poly (para-phenylenediamine)-modified Fe3O4 nanoparticles (PpPDA/Fe3O4) were synthesized and used as a magnetic adsorbent for the extraction and preconcentration of BPN and N-BPN in biological samples. The synthesized nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometery. An isocratic separation was achieved on a Nova-Pak C18 reversed-phase column using a mobile phase consisting phosphate buffer (pH 3.4) and acetonitrile (50:50, v/v) at a flow rate of 1.0 mL min?1. The detection was conducted at 280 nm. Under the optimum conditions, the calibration curves for BPN and N-BPN were linear in the ranges 3.0–150.0 and 1.0–120.0 ng mL?1, respectively. The sensitivity was also high with limit of detection of 0.8 and 0.3 ng mL?1 for BPN and N-BPN in plasma, respectively. The method was successfully applied to the extraction and determination of BPN and N-BPN in human plasma samples with an average recovery of 98.10 and 96.41%, respectively.  相似文献   

11.
A nanocomposite modified with dibenzo-18-crown-6 was synthesized and applied as a new sorbent for the preconcentration of thallium(I) via ultrasound assisted-solid phase extraction. This extraction step was combined with electrothermal atomic absorption spectrometry to determine ultra-trace amounts of thallium(I). The nanocomposite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction spectrometry, field emission scanning electron microscopy and transmission electron microscopy. Under the optimized conditions, a dynamic linear range from 7.0 to 435 ng L?1, a detection limit of 1.8 ng L?1 and a quantification limit of 6.0 ng L?1 were obtained. Also, the intra- and inter-day relative standard deviations for 20.0 ng mL?1 Tl(I) were calculated as ±4.8% and ±5.1%, respectively. The adsorbent was applied to the determination of thallium(I) in the environmental, biological and standard samples with satisfactory results.
Graphical abstract A magnetic nanocomposite was synthesized as adsorbent from halloysite nanotubes and a crown ether. Tl(I) ions were extracted selectively and determined by electrothermal atomic absorption spectrometry.
  相似文献   

12.
A method was developed for the determination of silver ion (Ag) by combining dispersive liquid-liquid microextraction preconcentration with graphite furnace atomic absorption spectrometry. Diethyldithiocarbamate was used as a chelating agent, and carbon tetrachloride and methanol as extraction and dispersive solvent. Factors influencing the extraction efficiency of Ag and its subsequent determination were studied and optimized. The detection limit is 12 ng L?1 (3 s) with an enrichment factor of 132, and the relative standard deviation is 3.5% (n?=?7, at 1.0 ng mL?1). The method was successfully applied to the determination of trace amounts of Ag in water samples.  相似文献   

13.
Feizbakhsh  Alireza  Ehteshami  Shokooh 《Chromatographia》2016,79(17):1177-1185

In this paper, polythiophene/chitosan magnetic nanocomposite as a novel adsorbent is proposed for the preconcentration of triazines in aqueous samples prior to gas chromatography. The synthesized nanoparticles, magnetic chitosan and polythiophene–chitosan magnetic nanocomposite were characterized by scanning electron microscopy. The magnetic polythiophene–chitosan nanocomposite containing analytes could be removed from the sample solution by applying a permanent magnet. The major factors influencing the extraction efficiency including desorption conditions, nanocomposite components ratio, sorbent amount, extraction time, ionic strength and sample pH were optimized. The developed method proved to be rather convenient and offers sufficient sensitivity and good reproducibility. The limit of detection (S/N = 3) and limit of quantification (S/N = 10) of the method under optimized conditions were 10–30 and 100 ng L−1, respectively. Under the optimum conditions, good linearity was obtained within the range of 100–5000 ng L−1 for all triazines with correlation coefficients >0.9994. The relative standard deviation at a concentration level of 150 ng L−1 was 7–12 %. Furthermore, the method was successfully applied to the determination of triazines in real samples, where relative recovery percentages of 96–102 % were obtained. Compared with other methods, the current method is characterized by easy, fast separation and low detection limits.

  相似文献   

14.
A sensitive and simple method has been established for simultaneous preconcentration of trace amounts of Pb (II) and Ni (II) ions in water samples prior to their determination by flame atomic absorption spectrometry. This method was based on the using of a micro-column filled with graphene oxide as an adsorbent. The influences of various analytical parameters such as solution pH, adsorbent amount, eluent type and volume, flow rates of sample and eluent, and matrix ions on the recoveries of the metal ions were investigated. Using the optimum conditions, the calibration graphs were linear in the range of 7–260 and 5–85 μg L?1 with detection limits (3Sb) of 2.1 and 1.4 μg L?1 for lead and nickel ions, respectively. The relative standard deviation for 10 replicate determinations of 50 μg L?1 of lead and nickel ions were 4.1% and 3.8%, respectively. The preconcentration factors were 102.5 and 95 for lead and nickel ions, respectively. The adsorption capacity of the adsorbent was also determined. The method was successfully applied to determine the trace amounts of Pb (II) and Ni (II) ions in real water samples. The validation of the method was also performed by the standard reference material.  相似文献   

15.
A fast and reliable method was developed for the selective separation and preconcentration of Cu2+ ions using homogeneous liquid-liquid extraction using a novel benzo-substituted macrocyclic diamide, 5,6,7,8,9,10-hexahydro-2H-1,13,4,7,10-benzodioatriazacyclo-pentadecine-3,11(4 H,12 H)-dione, as a selective complexing agent. An aqueous solution of Zonyl FSA (FSA) was used as a phase-separation agent at pH 4.5. Electrothermal atomic absorption spectrometry was used for Cu2+ determination after preconcentration. The influences of pH, type and volume of the water-miscible organic solvent, concentration of FSA, concentration of the ligand and the effect of diverse ions were investigated. Factorial design and response surface methods were used for the optimization purposes. Under the optimum experimental conditions, 50 ng of Cu2+ in 5 mL aqueous sample could be extracted quantitatively into 76 µL of the sediment phase. The maximum preconcentration factor was 65. The calibration curve was linear in the concentration range 0.2 to 4.0 µg L?1. The detection limit and relative standard deviation were 4 ng L?1 and 4.6%, respectively. The method was successfully applied to the extraction and determination of Cu2+ in natural water samples.  相似文献   

16.
《Analytical letters》2012,45(9):1430-1441
A new column loaded with modified silica gel-chitosan is proposed as a preconcentration system for adsorption of trace cadmium (II) and copper (II). The optimization steps were performed under dynamic conditions, involving pH, sample flow rate, eluent selection, concentration, volume, and flow rate. Trace Cd(II) and Cu(II) were quantitatively adsorbed by the modified silica gel-chitosan. The metal ions adsorbed on the separation column were eluted with 0.1 M HNO3 and determined by flame atomic absorption spectrometry. Under the optimum conditions, this method allowed the determination of cadmium and copper with limits of detection (LOD) of 20 ng L?1 and 38 ng L?1, respectively. The relative standard deviation values (RSDs) for 1.0 mg L?1 of cadmium and 1.0 mg L?1 of copper were 2.62% and 2.85%, respectively.  相似文献   

17.
A new method has been developed for the determination of metalaxyl, myclobutanil, and tebuconazole in environmental water samples with preconcentration by cartridges packed with SiO2 microspheres prior to LC. Several parameters such as the volume and composition of eluent, sample flow rate, sample pH, and sample volume were optimized. Under the optimal conditions, excellent detection limits (S/N = 3) and precision (RSD, n = 6) were 0.02 ng mL?1, 1.3% for metalaxyl, 0.02 ng mL?1, and 2.4% for myclobutanil and 0.08 ng mL?1 and 4.3% for tebuconazole, respectively. The method was applied to the analysis of real-water samples, and satisfactory results were obtained. The average spiked recoveries were in the range of 86.3–97.5%. These results indicate that SiO2 microspheres have great potential to be used as a novel solid phase extraction adsorbent that could have wide applications in the environmental field.  相似文献   

18.
A solid-phase extraction coupled with dispersive liquid–liquid microextraction (DLLME) method followed by graphite furnace atomic absorption spectrometry (GFAAS) was developed for the extraction, preconcentration, and determination of ultra trace amounts of lead in water samples. Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100 mL of lead solution were first concentrated using a solid phase sorbent. The extracts were collected in 1.50 mL of THF and 18 μL of carbon tetrachloride was dissolved in the collecting solvent. Then 5.0 mL pure water was injected rapidly into the mixture of THF and carbon tetrachloride for DLLME, followed by GFAAS determination of lead. The analytical figures of merit of method developed were determined. With an enrichment factor of 1,800, a linear calibration of 3–60 ng L?1 and a limit of detection of 1.0 ng L?1 were obtained. The relative standard deviation for seven replicate measurements of 30 ng L?1 of lead was 5.2 %. The relative recoveries of lead in mineral, tap, well, and river water samples at spiking level of 10 and 20 ng L?1 are in the range 94–106 %.  相似文献   

19.
A simple and fast method based on magnetic separation for extraction of pyrethroid pesticides including beta-cyfluthrin, cyhalothrin and cyphenothrin from environmental water samples has been established. Magnetic titanium dioxide was used as sorbent, which was synthesized by coating TiO2 on Fe3O4 in liquid-state co-precipitation method. The sorbent has been characterized by scanning electron microscopy and Fourier-transform infrared spectrometry, and the magnetic properties were investigated with physical property measurement system. Various parameters affecting the extraction efficiency were evaluated to achieve optimal condition and decrease ambiguous interactions. The analytes desorbed from the sorbent were detected by high performance liquid chromatography. Under the optimal condition, the linearity of the method is in the range of 25–2,500 ng L?1. The detection limits and quantification limits of pyrethroid pesticides are in the range of 2.8–6.1 ng L?1 and 9.3–20.3 ng L?1, respectively. The relative standard deviations of intra- and inter-day tests ranging from 2.5 to 7.2 % and from 3.6 to 9.1 % were obtained. In all three spiked levels (25, 250 and 2,500 ng L?1), the recoveries of pyrethroid pesticides were in the range of 84.5–94.1 %. The proposed method was successfully applied to determine pyrethroids in three water samples. Cyphenothrin was found in one river water near farmlands, and its concentration was 52 ng L?1.  相似文献   

20.
Magnetic solid-phase extraction based on Fe3O4/graphene oxide nanocomposites was investigated for the separation, preconcentration and determination of imatinib and doxorubicin in aqueous solutions. Synthesis of Fe3O4/graphene oxide was characterized by transmission electron microscopy, energy-dispersive X-ray analyzer and vibrating sample magnetometer. After optimizing the conditions, optimal experimental conditions including sample pH, the amount of the magnetic nanoparticles, the effect of salt concentration and other chemotherapy medications, eluent type and extraction time were studied and established. The method showed good linearity for the determination of doxorubicin and imatinib in the concentration range of 0.01–100 μg mL?1 in aqueous solutions with limit of detection 1.8 ng mL?1 for doxorubicin and 1.9 ng mL?1 for imatinib. The relative recoveries of doxorubicin and imatinib levels were 96.7 and 88.4%, respectively. The results indicate that the present procedure is a suitable method for extraction of imatinib and doxorubicin from environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号