首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The structure, thermodynamics and kinetics of the binary and ternary uranium(VI)-ethylenediamine-N,N'-diacetate (in the following denoted EDDA) fluoride systems have been studied using potentiometry, 1H, 19F NMR spectroscopy and X-ray diffraction. The UO2(2+)-EDDA system could be studied up to -log[H3O+] = 3.4 where the formation of two binary complexes UO2(EDDA)(aq) and UO2(H3EDDA)3+ were identified, with equilibrium constants logbeta(UO2EDDA) = 11.63 +/- 0.02 and logbeta(UO2H3EDDA3+) = 1.77 +/- 0.04, respectively. In the ternary system the complexes UO2(EDDA)F-, UO2(EDDA)(OH)- and (UO2)2(mu-OH)2(HEDDA)2F2(aq) were identified; the latter through 19F NMR. 1H NMR spectra indicate that the EDDA ligand is chelate bonded in UO2(EDDA)(aq), UO2(EDDA)F- and UO2(EDDA)(OH)- while only one carboxylate group is coordinated in UO2(H3EDDA)3+. The rate and mechanism of the fluoride exchange between UO2(EDDA)F- and free fluoride was studied by 19F NMR spectroscopy. Three reactions contribute to the exchange; (i) site exchange between UO2(EDDA)F- and free fluoride without any net chemical exchange, (ii) replacement of the coordinated fluoride with OH- and (iii) the self dissociation of the coordinated fluoride forming UO2(EDDA)(aq); these reactions seem to follow associative mechanisms. (1)H NMR spectra show that the exchange between the free and chelate bonded EDDA is slow and consists of several steps, protonation/deprotonation and chelate ring opening/ring closure, the mechanism cannot be elucidated from the available data. The structure (UO2)2(EDDA)2(mu-H2EDDA) was determined by single crystal X-ray diffraction and contains two UO2(EDDA) units with tetracoordinated EDDA linked by H2EDDA in the "zwitterion" form, coordinated through a single carboxylate oxygen from each end to the two uranium atoms. The geometry of the complexes indicates that there is no geometric constraint for an associative ligand substitution mechanism.  相似文献   

2.
Yu P  Phillips BL  Casey WH 《Inorganic chemistry》2001,40(18):4750-4754
An 17O, 19F, and 27Al NMR study of fluoroaluminate complexes (AlFn(H2O)6-n((3-n)+), n = 0, 1, and 2) in aqueous solution supports the idea that for each substitution of a bound water molecule by a fluoride anion, the exchange rate of bound water with free water increases by about 2 orders of magnitude. New rate coefficients for exchange of inner-sphere water molecules in AlF(H2O)5(2+) are kex(298) = 230(+/-20) s(-1), DeltaH(dagger) = 65(+/-3) kJ mol(-1), and DeltaS(dagger) = 19(+/-10) J mol(-1) K(-1). The corresponding new values for the AlF2(H2O)4(+) complex are: kex(298) = 17 100(+/-500) s(-1), DeltaH(dagger) = 66(+/-2) kJ mol(-1), and DeltaS(dagger) = 57(+/-8) J mol(-1) K(-1). When these new results are combined with those of our previous study,(4) we find no dependence of the solvent exchange rate, in either AlF(H2O)5(2+) or AlF2(H2O)4(+), on the concentration of fluoride or protons over the range of SigmaF = 0.06-0.50 M and [H(+)] = 0.01-0.44 M. A paramagnetic shift of 27Al resonances results from addition of Mn(II) to the aqueous solution as a relaxation agent for bulk waters. This shift allows resolution of the AlFn(H2O)6-n((3-n)+) species in 27Al NMR spectra and comparison of the speciation determined via thermodynamic calculations with that determined by 27Al, 19F, and 17O NMR.  相似文献   

3.
Szabó Z  Grenthe I 《Inorganic chemistry》2000,39(22):5036-5043
Equilibria, structures, and ligand-exchange dynamics in binary and ternary U(VI)-L-F- systems, where L is glycolate, alpha-hydroxyisobutyrate, or glycine, have been investigated in 1.0 M NaClO4 by potentiometry and 1H, 17O, and 19F NMR spectroscopy. L may be bonded in two ways: either through the carboxylate end or by the formation of a chelate. In the glycolate system, the chelate is formed by proton dissociation from the alpha-hydroxy group at around pH 3, indicating a dramatic increase, a factor of at least 10(13), of its dissociation constant on coordination to uranium(VI). The L exchange in carboxylate-coordinated UO2LF3(2-) follows an Eigen-Wilkins mechanism, as previously found for acetate. The water exchange rate, k(aq) = 4.2 x 10(5) s(-1), is in excellent agreement with the value determined earlier for UO2(2+)(aq). The ligand-exchange dynamics of UO2(O-CH2-COO)2F3- and the activation parameters for the fluoride exchange in D2O (k(obs) = 12 s(-1), deltaH(double dagger) = 45.8 +/- 2.2 kJ mo(-1), and deltaS(double dagger) = -55.8 +/- 3.6 J K(-1) mol(-1)) are very similar to those in the corresponding oxalate complex, with two parallel pathways, one for fluoride and one for the alpha-oxocarboxylate. The same is true for the L exchange in UO2(O-CH2-COO)2(2-) and UO2(oxalate)2(2-). The exchange of alpha-oxocarboxylate takes place by a proton-assisted chelate ring opening followed by dissociation. Because we cannot decide if there is also a parallel H+-independent pathway, only an upper limit for the rate constant, k1 < 1.2 s(-1), can be given. This value is smaller than those in previously studied ternary systems. Equilibria and dynamics in the ternary uranium(VI)-glycine-fluoride system, investigated by 19F NMR spectroscopy, indicate the formation of one major ternary complex, UO2LF3(2-), and one binary complex, UO2L2 (L = H2N-CH2COO-), with chelate-bonded glycine; log beta(9) = 13.80 +/- 0.05 for the equilibrium UO2(2+) + H2N-CH2COO- + 3F- = UO2(H2N-CH2COO)F3(2-) and log beta(11) = 13.0 +/- 0.05 for the reaction UO2(2+) + 2H2N-CH2COO- = UO2(H2N-CH2COO)2. The glycinate exchange consists of a ring opening followed by proton-assisted steps. The rate of ring opening, 139 +/- 9 s(-1), is independent of both the concentration of H+ and the solvent, H2O or D2O.  相似文献   

4.
冰晶石-氧化铝熔液是由各类离子质点组成的相当复杂的混合物,研究此熔盐系的离子结构对探讨铝电解机理和氧化铝在冰晶石熔液中的溶解机理具有重要意义[1],由于冰晶石-氧化铝的熔点高和腐蚀严重,一些衍射技术难以用于此熔盐系液态微观结构性质的研究。  相似文献   

5.
Hung M  Bakac A 《Inorganic chemistry》2005,44(25):9293-9298
The reaction between the aqueous chromyl ion, CraqO2+, and Br- is acid-catalyzed and generates Br2. Kinetic studies that utilized a superoxochromium ion, CraqOO2+, as a kinetic probe yielded a mixed third-order rate law, -d[CraqO2+]/dt=k[CraqO2+][Br-][H+], where k=608+/-11 M-2 s-1. Experimental data strongly favor a one-electron mechanism, but the reaction is much faster than predicted on the basis of the reduction potential for the Br*/Br- couple. The reduction of CraqO2+ by transition-metal complexes, on the other hand, exhibits "normal" behavior, that is, k=(1.37x10(3)+1.94x10(3) [H+]) M-1 s-1 for Os(1,10-tris-phenanthroline)(3)2+ and <10 M-1 s-1 for Ru(2,2'-bipyridine)3(2+) at 0.1 M H+. The reduction of CraqOO2+ by Br2*- takes place with a rate constant k=(1.23+/-0.20)x10(9) M-1 s-1, as determined by laser-flash photolysis.  相似文献   

6.
By the use of [1H,15N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy and electrochemical methods we have determined the hydrolysis profile of the bifunctional dinuclear platinum complex [[trans-PtCl(15NH3)2]2(mu-15NH2(CH2)(6)15NH2)]2+ (1,1/t,t (n = 6), 15N-1), the prototype of a novel class of potential antitumor complexes. Reported are estimates for the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pKa1 approximately pKa2 approximately pKa3). The equilibrium constants determined by NMR at 25 and 37 degrees C (I = 0.1 M) were similar, pK1 approximately pK2 = 3.9 +/- 0.2, and from a chloride release experiment at 37 degrees C the values were found to be pK1 = 4.11 +/- 0.05 and pK2 = 4.2 +/- 0.5. The forward and reverse rate constants for aquation determined from this chloride release experiment were k1 = (8.5 +/- 0.3) x 10(-5) s-1 and k-1 = 0.91 +/- 0.06 M-1 s-1, where the model assumed that all the liberated chloride came from 1. When the second aquation step was also taken into account, the rate constants were k1 = (7.9 +/- 0.2) x 10(-5) s-1, k-1 = 1.18 +/- 0.06 M-1 s-1, k2 = (10.6 +/- 3.0) x 10(-4) s-1, k-2 = 1.5 +/- 0.6 M-1 s-1. The rate constants compare favorably with other complexes with the [PtCl(am(m)ine)3]+ moiety and indicate that the equilibrium of all these species favors the chloro form. A pKa value of 5.62 was determined for the diaquated species [[trans-Pt(15NH3)2(H2O)]2(mu-15NH2(CH2)(6)15NH2)]4+ (3) using [1H,15N] HSQC NMR spectroscopy. The speciation profile of 1 and its hydrolysis products under physiological conditions is explored.  相似文献   

7.
13C NMR was used to study the rate of DMF exchange in the nickel(II) cation Ni(DMF)6(2+) and in the monochloro species Ni(DMF)5Cl+ with 13C-labeled DMF in the temperature range of 193-395 K in DMF (DMF = N,N-dimethylformamide). The kinetic parameters for solvent exchange are kex = (3.7 +/- 0.4) x 10(3) s-1, delta H++ = 59.3 +/- 5 kJ mol-1, and delta S++ = +22.3 +/- 14 J mol-1 K-1 for Ni(DMF)6(2+) and kex = (5.3 +/- 1) x 10(5) s-1, delta H++ = 42.4 +/- 4 kJ mol-1, and delta S++ = +6.7 +/- 15 J mol-1 K-1 for Ni(DMF)5Cl+. Multiwavelength stopped-flow spectrophotometry was used to study the kinetics of complex formation of the cation Ni(DMF)6(2+) and of the 100-fold more labile cation Ni(DMF)5Cl+ with TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and TEC (1,4,8,11-tetraethyl-1,4,8,11-tetraazacyclotetradecane) in DMF at 298 K and I = 0.6 M (tetra-n-butylammoniumperchlorate). Equilibrium constants K for the addition of the nucleophiles DMF, Cl-, and Br- to the complexes Ni(TMC)2+ and Ni(TEC)2+ were determined by spectrophotometric titration. Formation of the complexes Ni(TMC)2+ and Ni(TEC)2+ was found to occur in two stages. In the initial stage, fast, second-order nickel incorporation with rate constants k1(TMC) = 99 +/- 5 M-1 s-1 and k1 (TEC) = 235 +/- 12 M-1 s-1 leads to the intermediates Ni(TMC)int2+ and Ni(TEC)int2+, which have N4-coordinated nickel. In the second stage, these intermediates rearrange slowly to form the stereochemically most stable configuration. First-order rate constants for the one-step rearrangement of Ni(TMC)int2+ and the two-step rearrangment of Ni(TEC)int2+ are presented. Because of the rapid formation of Ni(DMF)5Cl+, the reactions of Ni(DMF)6(2+) with TMC and TEC are accelerated upon the addition of tetra-n-butylammoniumchloride (TBACl) and lead to the complexes Ni(TMC)Cl+ and Ni(TEC)Cl+, respectively. For initial concentrations such that [TBACl]o/[nickel]o > or = 20, intermediate formation is 230 times (TMC) and 47 times (TEC) faster than in the absence of chloride. The mechanism of complex formation is discussed.  相似文献   

8.
The hydrogen-bonded phenol 2-(aminodiphenylmethyl)-4,6-di-tert-butylphenol (HOAr-NH2) was prepared and oxidized in MeCN by a series of one-electron oxidants. The product is the phenoxyl radical in which the phenolic proton has transferred to the amine, *OAr-NH3+. The reaction of HOAr-NH2 and tris(p-tolyl)aminium ([N(tol)3]*+) to give *OAr-NH3+ + N(tol)3 has Keq = 2.0 +/- 0.5, follows second-order kinetics with k = (1.1 +/- 0.2) x 105 M-1 s-1 (DeltaG = 11 kcal mol-1), and has a primary isotope effect kH/kD = 2.4 +/- 0.4. Oxidation of HOAr-NH2 with [N(C6H4Br)3]*+ is faster, with k congruent with 4 x 107 M-1 s-1. The isotope effect, thermochemical arguments, and the dependence of the rate on driving force (DeltaDeltaG/DeltaDeltaG degrees = 0.53) all indicate that electron transfer from HOAr-NH2 must occur concerted with intramolecular proton transfer from the phenol to the amine (proton-coupled electron transfer, PCET). The data rule out stepwise paths that involve initial electron transfer to form the phenol radical cation *+HOAr-NH2 or that involve initial proton transfer to give the zwitterion -OAr-NH3+. The dependence of the electron-transfer rate constants on driving force can be fit with the adiabatic Marcus equation, yielding a large intrinsic barrier: lambda = 34 kcal mol-1 for reactions of HOAr-NH2 with NAr3*+.  相似文献   

9.
The synthesis of syn,anti-[Co(cyclen)en](ClO4)3 (1(ClO4)3) and syn,anti-[Co(cyclen)tn](ClO4)3 (2(ClO4)3) is reported, as are single-crystal X-ray structures for syn,anti-[Co(cyclen)(NH3)2](ClO4)3 (3(ClO4)3). 3(ClO4)3: orthorhombic, Pnma, a = 17.805(4) A, b = 12.123(3) A, c = 9.493(2) A, alpha = beta = gamma = 90 degrees, Z = 4, R1 = 0.030. 1(ClO4)3: monoclinic, P2(1)/n, a = 8.892(2) A, b = 15.285(3) A, c = 15.466(3) A, alpha = 90 degrees, beta = 91.05(3) degrees, gamma = 90 degrees, Z = 4, R1 = 0.0657. 2Br3: orthorhombic, Pca2(1) a = 14.170(4) A, b = 10.623(3) A, c = 12.362(4) A, alpha = beta = gamma = 90 degrees, Z = 4, R1 = 0.0289. Rate constants for H/D exchange (D2O, I = 1.0 M, NaClO4, 25 degrees C) of the syn and anti NH protons (rate law: kobs = ko + kH[OD-]) and the apical NH, and the NH3 and NH2 protons (rate law: kobs = kH[OD-]) in the 1, 2, and 3 cations are reported. Deprotonation constants (K = [Co(cyclen-H)(diamine)2+]/[Co(cyclen)(diamine)3+][OH-]) were determined for 1 (5.5 +/- 0.5 M-1) and 2 (28 +/- 3 M-1). In alkaline solution 1, 2, and 3 hydrolyze to [Co(cyclen)(OH)2]+ via [Co(cyclen)(amine)OH)]2+ monodentates. Hydrolysis of 3 is two step: kobs(1) = kOH(1)[OH-], kobs(2) = ko + kOH(2)[OH-] (kOH(1) = (2.2 +/- 0.4) x 10(4) M-1 s-1, ko = (5.1 +/- 1.2) x 10(-4) s-1, kOH(2) = 1.0 +/- 0.1 M-1 s-1). Hydrolysis of 2 is biphasic: kobs(1) = k1K[OH-]/(1 + K[OH-] (k1 = 5.0 +/- 0.2 s-1, K = 28 M-1), kobs(2) = k2K2[OH-]/(1 + K2[OH-]) (k2 = 3.5 +/- 1.2 s-1, K2 = 1.2 +/- 0.8 M-1). Hydrolysis of 1 is monophasic: kobs = k1k2KK2[OH-]2/(1 + K[OH-1])(k-1 + k2K2[OH-]) (k1 = 0.035 +/- 0.004 s-1, k-1 = 2.9 +/- 0.6 s-1, K = 5.5 M-1, k2K2 = 4.0 M-1 s-1). The much slower rate of chelate ring-opening in 1, compared to loss of NH3 from 3, is rationalized in terms of a reduced ability of the former system to allow the bond angle expansion required to produce the SN1CB trigonal bipyramidal intermediate.  相似文献   

10.
ABTS2-, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) dianion, was used as a reference to compare the reactivity of peroxyl radicals of two amino acids, glycine and valine, in aqueous solutions at natural pH. Peroxyl radicals were produced by pulse radiolysis and the product of their reaction with ABTS2- the ABTS*- radical was observed spectrophotometrically. Experimental kinetic traces were fitted using chemical simulation. The rate constants of reactions of glycine and valine peroxyl radicals with ABTS2- were (6.0+/-0.2)x10(6) and (1.3+/-0.1)x10(5) M-1.s-1, respectively. Moreover, it was found that only 60% of glycine radicals formed upon its reaction with *OH radicals reacted with molecular oxygen to yield peroxyl radicals. Comparison of experimental data with simulations of chemical reactions in irradiated ABTS and ABTS/NaSCN solutions showed that ABTS*- forms in the reaction with *OH with a yield of 43% and rate constant of (5.4+/-0.2)x10(9) M-1.s-1 and in the reaction with (SCN)2*- with a yield of 57% and rate constant of (8.0+/-0.2)x10(8) M-1.s-1.  相似文献   

11.
Dynamic processes such as chemical exchange or rotations between inequivalent orientations can affect the magic-angle spinning (MAS) and the multiple-quantum (MQ) MAS NMR spectra of half-integer quadrupolar nuclei. The present paper discusses such dynamic multisite MAS and MQMAS effects and applies them to study the dynamic processes that occur in the double perovskite cryolite, Na3AlF6. Dynamic line shape simulations invoking a second-order broadening of the central transition and relying on the semiclassical Bloch-McConnell formalism for chemical exchange were performed for a variety of exchange models possessing different symmetries. Fitting experimental variable-temperature cryolite 23Na NMR data with this formalism revealed that the two inequivalent sodium sites in this mineral undergo an exchange characterized by a broad distribution of rates. To further assess this dynamic process a variety of 27Al and 19F MAS NMR studies were also undertaken; quantitative 27Al-19F dipolar coupling measurements then revealed a dynamic motion of the AlF6 octahedra that were qualitatively consistent with predictions stemming from molecular dynamic simulations on this double perovskite.  相似文献   

12.
Multinuclear (1)H, (19)F, and (27)Al MAS (magic angle spinning) and corresponding 2D HETCOR (heteronuclear correlation) NMR spectroscopy, in combination with powder XRD measurements, provide the direct evidence for the NH(4)AlF(4) crystalline phase, which was formed from zeolite HY dealuminated with an aqueous (NH(4))(2)SiF(6) solution at 80 degrees C. The NH(4)AlF(4) crystalline phase exhibits a characteristic second-order quadrupolar-induced (27)Al NMR line shape spreading from 0 to -90 ppm (in a magnetic field of 11.7 T) and two (19)F resonances at -151 and -166 ppm in the (19)F NMR spectrum. An( 27)Al quadrupolar coupling constant (C(Q)) of 9.5 MHz and an asymmetry parameter (eta) of 0.1 were identified, for the first time, for the NH(4)AlF(4) crystalline phase observed. On the basis of the (19)F{(27)Al} TRAPDOR (transfer population in double resonance) NMR results, the (19)F resonances at -151 and -166 ppm are therefore assigned to (19)F spins associated with the fluorines in the terminal Al-F and the bridging Al-F-Al groups, respectively.  相似文献   

13.
14.
Kinetic and thermodynamic properties of the aminoxyl (NH2O*) radical   总被引:1,自引:0,他引:1  
The product of one-electron oxidation of (or H-atom abstraction from) hydroxylamine is the H2NO* radical. H2NO* is a weak acid and deprotonates to form HNO-*; the pKa(H2NO*) value is 12.6+/-0.3. Irrespective of the protonation state, the second-order recombination of the aminoxyl radical yields N2 as the sole nitrogen-containing product. The following rate constants were determined: kr(2H2NO*)=1.4x10(8) M-1 s-1, kr(H2NO*+HNO-*)=2.5x10(9) M-1 s-1, and kr(2HNO-*)=4.5x10(8) M-1 s-1. The HNO-* radical reacts with O2 in an electron-transfer reaction to yield nitroxyl (HNO) and superoxide (O2-*), with a rate constant of ke(HNO-*+O2-->HNO+O2-*)=2.2x10(8) M-1 s-1. Both O2 and O2-* seem to react with deprotonated hydroxylamine (H2NO-) to set up an autoxidative chain reaction. However, closer analysis indicates that these reactions might not occur directly but are probably mediated by transition-metal ions, even in the presence of chelators, such as ethylenediamine tetraacetic acid (EDTA) or diethylenetriamine pentaacetic acid (DTPA). The following standard aqueous reduction potentials were derived: E degrees (H2NO*,2H+/H3NOH+)=1.25+/-0.01 V; E degrees (H2NO*,H+/H2NOH)=0.90+/-0.01 V; and E degrees (H2NO*/H2NO-)=0.09+/-0.01 V. In addition, we estimate the following: E degrees (H2NOH+*/H2NOH)=1.3+/-0.1 V, E degrees (HNO, H+/H2NO*)=0.52+/-0.05 V, and E degrees (HNO/HNO-*)=-0.22+/-0.05 V. From the data, we also estimate the gaseous O-H and N-H bond dissociation enthalpy (BDE) values in H2NOH, with BDE(H2NO-H)=75-77 kcal/mol and BDE(H-NHOH)=81-82 kcal/mol. These values are in good agreement with quantum chemical computations.  相似文献   

15.
Ammonia adsorption studies reveal that the observed Lewis acidity in the zeolite MCM-22 is derived from at least two types of framework aluminum sites (AlF), that is, octahedral AlF and three-coordinate AlF. Comparative ammonia or trimethylphosphine (TMP) adsorption experiments with MCM-22 confirm that octahedral Al species gives rise to the signal at delta(iso) approximately 0 in the 27Al NMR spectrum; this is a superposition of two NMR signals from the different Al species on the water-reconstructed zeolite surface. A sharp resonance assigned to framework Al reversibly transforms on ammonia adsorption to delta(iso)27Al approximately 55 from tetrahedral AlF, while the broad peak is assigned to nonframework aluminum which results from hydrothermal treatment. This study also demonstrates the effectiveness of 27Al magic angle spinning (MAS) and multiple quantum (MQ) MAS NMR spectroscopy as a technique for the study of zeolite reactions.  相似文献   

16.
A new aluminum fluoride, Al(2)F(8).2NC(5)H(6).C(6)H(3)(CO(2)H)(3), was synthesized under mild hydrothermal conditions (200 degrees C, 3 days) in the presence of 1,3,5-benzenetricarboxylic acid (btc) in pyridine/HF (pyr/HF) solvent. Its structure is characterized with single-crystal XRD analysis and high-resolution solid-state NMR. The inorganic framework consists of the corner- and edge-shared connections of AlF(6) octahedra. They are linked via a common edge and form a bioctahedral motif which is trans-connected through the corner-shared fluorine. It results in the formation of an original infinite double file of AlF(6) octahedra running along the a axis. A high-power decoupled MAS (27)Al{(19)F} Hahn echo NMR spectrum allowed us to distinguish the two crystallographic hexacoordinated Al sites. Four unresolved (19)F NMR signals are observed in the MAS spectra to account for the eight crystallographic fluorine atoms. Half of the terminal fluorine sites interact via strong hydrogen bonds with the ammonium groups of the pyridine moieties. The resulting mixed pyridine-fluoroaluminate chains are intercalated by the btc molecules which are hydrogen-bonded to the remaining free terminal fluoride anions through the protonated carboxylic acid function. The (1)H nuclei of both organic molecules are observed in the protonated form.  相似文献   

17.
Espenson JH  Yiu DT 《Inorganic chemistry》2000,39(18):4113-4118
The stable compound CH3ReO3 (MTO), upon treatment with aqueous hypophosphorous acid, forms a colorless metastable species designated MDO, CH3ReO2(H2O)n (n = 2). After standing, MDO is first converted to a yellow dimer (lambda max = 348 nm; epsilon = 1.3 x 10(4) L mol-1 cm-1). That reaction follows second-order kinetics with k = 1.4 L mol-1 s-1 in 0.1 M aq trifluoromethane sulfonic acid at 298 K. Kinetics studies as functions of temperature gave delta S++ = -4 +/- 15 J K-1 mol-1 and delta H++ = 71.0 +/- 4.6 kJ mol-1. A much more negative value of delta S++ would be expected for simple dimerization, suggesting the release of one or more molecules of water in forming the transition state. If solutions of the dimer are left for a longer period, an intense blue color results, followed by precipitation of a compound that does, even after a long time, retain the Re-CH3 bond in that aq. hydrogen peroxide generates the independently known CH3Re(O)(O2)2(H2O). The blue compound may be analogous to the intensely colored purple cation [(Cp*Re)3(mu 2-O)3(mu 3-O)3ReO3]+. If a pyridine N-oxide is added to the solution of the dimer, it is rapidly but not instantaneously lost at the same time that a catalytic cycle, separately monitored by NMR, converts the bulk of the PyO to Py according to this stoichiometric equation in which MDO is the active intermediate: C5H5NO + H3PO2-->C5H5N + H3PO3. A thorough kinetic study and the analysis by mathematical and numerical simulations show that the key step is the conversion of the dimer D into a related species D* (presumably one of the two mu-oxo bonds has been broken); the rate constant is 5.6 x 10(-3) s-1. D* then reacts with PyO just as rapidly as MDO does. This scheme is able to account for the kinetics and other results.  相似文献   

18.
A recent report claims to have prepared [18F]XeF2 by exchange between a large stoichiometric excess of XeF2 and no-carrier-added 18F-, as salts of the [2,2,2-crypt-M+] (M = K or Cs) cations, in CH2Cl2 or CHCl3 solvents at room temperature. Attempts to repeat this work have proven unsuccessful and have led to a critical reinvestigation of chemical exchange between fluoride ion, in the form of anhydrous [N(CH3)4][F] and [2,2,2-crypt-K][F], and XeF2 in dry CH2Cl2 and CH3CN solvents. It was shown, by use of 19F and 1H NMR spectroscopies, that [2,2,2-crypt-K][F] rapidly reacts with CH3CN solvent to form HF2-, and with CH2Cl2 solvent to form HF2-, CH2ClF, and CH2F2 at room temperature. Moreover, XeF2 rapidly oxidizes 2,2,2-crypt in CH2Cl2 solvent at room temperature to form HF and HF2-. Thus, the exchange between XeF2 and no-carrier-added 18F- reported in the prior work arises from exchange between XeF2 and HF/HF2-, and does not involve fluoride ion. However, naked fluoride ion has been shown to undergo exchange with XeF2 under rigorously anhydrous and HF-free conditions. A two-dimensional 19F-19F EXSY NMR study demonstrated that [N(CH3)4][F] exchanges with XeF2 in CH3CN solvent, but exchange of HF2- with either XeF2 or F- is not detectable under these conditions. The exchange between XeF2 and F- is postulated to proceed by the formation of XeF3- as the exchange intermediate.  相似文献   

19.
The structure of the very strong solid Lewis acid aluminum chlorofluoride (ACF, AlCl(x)F(3-x), x = 0.05-0.3) was studied by IR, ESR, Cl K XANES, (19)F MAS NMR, and (27)Al SATRAS NMR spectroscopic methods and compared with amorphous aluminum fluoride conventionally prepared by dehydration of alpha-AlF(3) x 3H(2)O. The thermal behavior of both compounds was investigated by DTA and XRD. In comparison to ACF, amorphous AlF(3) prepared in a conventional way is not catalytically active for the isomerization reaction of 1,2-dibromohexafluoropropane, which requires a very strong Lewis acid. Both compounds are mainly built up of corner-sharing AlF(6) octahedra forming a random network. The degree of disorder in ACF is higher than in amorphous AlF(3). Terminal fluorine atoms were detected in ACF by (19)F NMR. The chlorine in ACF does not exist as a separate, crystalline AlCl(3) phase. Additionally, chlorine-containing radicals, remaining from the synthesis, are trapped in cavities of ACF. These radicals are stable at room temperature but do not take part in the catalytic reaction.  相似文献   

20.
The effects of 10 paramagnetic metal complexes (Fe(III)EDTA(H2O)-, Fe(III)EDTA(OH)2-, Fe(III)PDTA-, Fe(III)DTPA2-, Fe(III)2O(TTHA)2-, Fe(III)(CN)6(3-), Mn(II)EDTA(H2O)2-, Mn(II)PDTA2-, Mn(II)beta-EDDADP2-, and Mn(II)PO4(-)) on F- ion 19F NMR transverse relaxation rates (R2 = 1/T2) were studied in aqueous solutions as a function of temperature. Consistent with efficient relaxation requiring formation of a metal/F- bond, only the substitution inert complexes Fe(III)(CN)6(3-) and Fe(III)EDTA(OH)2- had no measured effect on T2 relaxation of the F- 19F resonance. For the remaining eight complexes, kinetic parameters (apparent second-order rate constants and activation enthalpies) for metal/F- association were determined from the dependence of the observed relaxation enhancements on complex concentration and temperature. Apparent metal/F- association rate constants for these complexes (k(app,F-)) spanned 5 orders of magnitude. In addition, we measured the rates at which O2*- reacts with Fe(III)PDTA-, Mn(II)EDTA(H2O)2-, Mn(II)PDTA2-, and Mn(II)beta-EDDADP2- by pulse radiolysis. Although no intermediate is observed during the reduction of Fe(III)PDTA- by O2*-, each of the Mn(II) complexes reacts with formation of a transient intermediate presumed to form via ligand exchange. These reactivity patterns are consistent with literature precedents for similar complexes. With these data, both k(app,O2-) and k(app,F-) are available for each of the eight reactive complexes. A plot of log(k(app,O2-)) versus log(k(app,F-)) for these eight showed a linear correlation with a slope approximately 1. This correlation suggests that rapid metal/O2*- reactions of these complexes occur via an inner-sphere mechanism whereas formation of an intermediate coordination complex limits the overall rate. This hypothesis is also supported by the very low rates at which the substitution inert complexes (Fe(III)(CN)6(3-) and Fe(III)EDTA(OH)2-) are reduced by O2*-. These results suggest that F- 19F NMR relaxation can be used to predict the reactivities of other Fe(III) complexes toward reduction by O2*-, a key step in the biological production of reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号