首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Low-temperature (T = 1.6 K) photoluminescence (PL) of individual CdSe/ZnSe/ZnMnSe quantum dots (QDs) with different magnitudes of the sp-d exchange interaction between the magnetic impurity ions and charge carriers has been studied in a magnetic field up to 12 T applied in the Faraday and Voigt geometry. The magnitude of the interaction was controlled by changing the fraction (ηe, h) of the squared wave function of charge carriers in the semimagnetic barrier by means of variation of the nonmagnetic (ZnSe) layer thickness. It is established that the sp-d exchange interaction leads to a change in the sign of the effective hole g factor even for ηe, h ~ 5%, while further increase in the interaction magnitude is accompanied by a rapid growth in the magnitude of spin splitting for both electrons and holes. The quantum yield of PL exhibits a significant decrease due to nonradiative Auger recombination with the excitation of Mn ions only for ηe, h ~ 12%, while the rate of the holes spin relaxation starts growing only for still higher ηe, h values. In a strong magnetic field perpendicular to the sample plane, the alignment of Mn spins leads to suppression of the Auger recombination only in the excited spin state. For a small rate of the hole spin relaxation, this leads to a rather unusual result: the emission from an excited trion state predominates in strong magnetic fields.  相似文献   

2.
The paramagnetic relaxation of Tb0,01 Y0,99(C2H5SO4)3·9H2O at temperatures between 1,14°K and 4,21°K has been investigated with the absorption-dispersion method at frequencies between 5 sec?1 and 10240 sec?1 and different magnetic fields. AtH=700 Oe. The relaxation time follows the equationτ ?1=[A H 3 coth (g z μ B H/2k T)+B T 7] sec?1 as a function of temperature. ForH<800 Oe the paramagnetic relaxation is influenced by cross relaxation processes between the hyperfine structure levels.  相似文献   

3.
The paramagnetic relaxation of a single crystal of CeCl3·7H2O has been studied by the dispersion-absorption-method at temperatures between 1,1 and 4,2°K. Alternating magnetic fields with frequencies between 5 and 2660 Hz and parallel magnetic fields up to 4000 Oe have been used. The spin lattice relaxation time has been determined as a function of temperature. At two special rangesH 1 andH 4 of the magnetic field a second, temperature-independent dispersion-absorption region has been observed besides the temperature-dependent spin-lattice relaxation (double relaxation). At two other special magnetic fieldsH 2 andH 3 the anomalous field dependence of the high frequency adiabatic susceptibility suggests a second dispersion-absorption-region ocurring at frequencies, which we cannot attain experimentally. In all cases cross relaxation processes are combined with the spin lattice relaxation.  相似文献   

4.
The paramagnetic relaxation in CeCl3 was investigated in the temperature interval between 1.07°K and 4.21°K using a mutual inductance bridge at frequencies between 3 Hz and 3200 Hz. The dependence of the complex susceptibility on temperature below theλ point is given by a Debye function. Above this temperature, however, deviations occur. The temperature dependence of the relaxation time forT<T λ can be described byτT ?n where 1.82≦n≦2.35 for 470 Oe≦H≦3360 Oe. At the highest temperatures Orbach Processes occur over the first excited crystal field component which according to these measurements lies atE II=k(56±10)°K. In the entire temperature range the relaxation processes are determined by further relaxation mechanisms in addition to the spin lattice relaxation. The nature of these could not, however, be determined.  相似文献   

5.
6.
The variations in the magnetic resonance spectra accompanying the transition from the paramagnetic to ferrimagnetic state in [{Cr(CN)6} {Mn(S)-pnH-(H2O) }] · H2O orthorhombic chiral molecular crystals were studied. The dependence of the EPR linewidth on temperature in the proximity of the transition point TC = 38 K argues for the two-dimensional character of spin ordering. The spin resonance line was found to undergo exchange narrowing at T > TC. The ferrimagnetic phase has an easy magnetization axis coinciding with the a crystallographic axis.  相似文献   

7.
The electron spin resonance has been measured for the first time both in the paramagnetic phase of the metallic GdB6 antiferromagnet (TN = 15.5K) and in the antiferromagnetic state (T < TN). In the paramagnetic phase below T* ~ 70 K, the material is found to exhibit a pronounced increase in the resonance linewidth and a shift in the g-factor, which is proportional to the linewidth Δg(T) ~ ΔH(T). Such behavior is not characteristic of antiferromagnetic metals and seems to be due to the effects related to displacements of Gd3+ ions from the centrosymmetric positions in the boron cage. The transition to the antiferromagnetic phase is accompanied by an abrupt change in the position of resonance (from μ0H0 ≈ 1.9 T to μ0H0 ≈ 3.9 T at ν = 60 GHz), after which a smooth evolution of the spectrum occurs, resulting eventually in the formation of the spectrum consisting of four resonance lines. The magnetic field dependence of the frequency of the resonant modes ω0(H0) obtained in the range of 28–69 GHz is well interpreted within the model of ESR in an antiferromagnet with the easy anisotropy axis ω/γ = (H 0 2 +2HAHE)1/2, where HE is the exchange field and HA is the anisotropy field. This provides an estimate for the anisotropy field, HA ≈ 800 Oe. This value can result from the dipole?dipole interaction related to the mutual displacement of Gd3+ ions, which occurs at the antiferromagnetic transition.  相似文献   

8.
The magneto-optical Faraday effect was used to measure the spin-lattice relaxation timeT 1 of the rare earth ions Ho and Dy in the ethyl sulfate in the temperature range 1.4≦T≦2.15°K and for magnetic fields between 100 and 5300 oersteds. The magnetic field was pulse modulated and the approach to equilibrium in the spin populations was studied. The measured dependence ofT 1 on the temperature is in good agreement with theory. Cross-relaxation processes have been identified in the holmium ethyl sulfate.  相似文献   

9.
Samples of a superconducting indium nanocomposite based on a thin-film porous dielectric matrix prepared by the Langmuir–Blodgett method are obtained for the first time, and their low-temperature electrophysical and magnetic properties are studied. Films with thickness b ≤ 5 μm were made from silicon dioxide spheres with diameter D = 200 and 250 nm; indium was introduced into the pores of the films from the melt at a pressure of P ≤ 5 kbar. Thus, a three-dimensional weakly ordered structure of indium nanogranules was created in the pores, forming a continuous current-conducting grid. Measurements of the temperature and magnetic field dependences of the resistance and magnetic moment of the samples showed an increase in the critical parameters of the superconductivity state of nanostructured indium (critical temperature Tc ≤ 3.62 K and critical magnetic field Hc at T = 0 K Hc(0) ≤ 1700 Oe) with respect to the massive material (Tc = 3.41 K, Hc(0) = 280 Oe). In the dependence of the resistance on temperature and the magnetic field, a step transition to the superconductivity state associated with the nanocomposite structure was observed. A pronounced hysteresis M(H) is observed in the dependence of the magnetic moment M of the nanocomposite on the magnetic field at T < Tc, caused by the multiply connected structure of the current-conducting indium grid. The results obtained are interpreted taking into account the dimensional dependence of the superconducting characteristics of the nanocomposite.  相似文献   

10.
The magnetic, magnetoelectric, and magnetoelastic properties of a PrFe3(BO3)4 single crystal and the phase transitions induced in this crystal by the magnetic field are studied both experimentally and theoretically. Unlike the previously investigated ferroborates, this material is characterized by a singlet ground state of the rare-earth ion. It is found that, below T N = 32 K, the magnetic structure of the crystal in the absence of the magnetic field is uniaxial (lc), while, in a strong magnetic field Hc (H cr ~ 43 kOe at T = 4.2 K), a Fe3+ spin reorientation to the basal plane takes place. The reorientation is accompanied by anomalies in magnetization, magnetostriction, and electric polarization. The threshold field values determined in the temperature interval 2–32 K are used to plot an H-T phase diagram. The contribution of the Pr3+ ion ground state to the parameters under study is revealed, and the influence of the praseodymium ion on the magnetic and magnetoelectric properties of praseodymium ferroborate is analyzed.  相似文献   

11.
The study of galvanomagnetic, magnetic, and magnetooptical characteristics of iron monosilicide in a wide range of temperatures (1.8–40 K) and magnetic fields (up to 120 kOe) has revealed the origin of the low-temperature sign reversal of the Hall coefficient in FeSi. It is shown that this effect is associated with an increase in the amplitude of the anomalous component of the Hall resistance ρH (the amplitude increases by more than five orders of magnitude with decreasing temperature in the range 1.8–20 K). The emergence of the anomalous contribution to ρH is attributed to the transition from the spin-polaron to coherent regime of electron density fluctuations in the vicinity of Fe centers and to the formation of nanosize ferromagnetic regions, i.e., ferrons (about 10 Å in diameter), in the FeSi matrix at T<TC=15 K. An additional contribution to the Hall effect, which is observed near the temperature of sign reversal of ρH and is manifested as the second harmonic in the angular dependences ρH(?), cannot be explained in the framework of traditional phenomenological models. Analysis of magnetoresistance of FeSi in the spin-polaron and coherent spin fluctuation modes shows that the sign reversal of the ratio Δρ(H)/ρ accompanied by a transition from a positive (Δρ /ρ>0, T>Tm) to a negative (Δρ/ρ<0, T<Tm) magnetoresistance is observed in the immediate vicinity of the mictomagnetic phase boundary at Tm=7 K. The linear asymptotic form of the negative magnetoresistance Δρ/ρ ∝?H in weak magnetic fields up to 10 kOe is explained by the formation of magnetic nanoclusters from interacting ferrons in the mictomagnetic phase of FeSi at T<Tm. The results are used for constructing for the first time the low-temperature magnetic phase diagram of FeSi. The effects of exchange enhancement are estimated quantitatively and the effective parameters characterizing the electron subsystem in the paramagnetic (T>TC), ferromagnetic (Tm<T< TC), and mictomagnetic (T<Tm) phases are determined. Analysis of anomalies in the aggregate of transport, magnetic, and magnetooptical characteristics observed in the vicinity of Hm≈35 kOe at T<Tm leads to the conclusion that a new collinear magnetic phase with MH exists on the low-temperature phase diagram of iron monosilicide.  相似文献   

12.
For the first time, the CuFeO2 single crystal has been studied by 63,65Cu nuclear magnetic resonance (NMR). The measurements have been carried out in the temperature range of T = 100?350 K in the magnetic field H = 117 kOe applied along different crystallographic directions. The components of the electric field gradient tensor and the hyperfine coupling constants are determined. It is shown that electrons of copper 4s and 3d orbitals are involved in the spin polarization transfer Fe → Cu. The occupancies of these orbitals are estimated.  相似文献   

13.
The paramagnetic relaxation of Ho x Y1?x (C2H5SO4)3·9H2O (x=1; 0.14; 0.1) was investigated with a mutual inductance bridge with frequencies fromν=10 sec?1 toν=10600 sec?1 in the temperature range betweenT=1.14°K and 2.11°K. In the diluted samples there is a strong influence of cross relaxation processes between the hyperfine levels on both the paramagnetic relaxation and the paramagnetic susceptibility. One and two spin cross relaxation processes were found. The susceptibility measured as a function of frequency is compared with the susceptibility calculated from the known energy levels of Ho(C2H5SO4)3·9H2O. Thus the way how the relaxation process takes place between the various systems (crystal field-, Zeeman-, dipol dipol coupling-, hyperfine structure-, lattice- and bath-system) can be deduced. Some preliminary measurements atν=24.106 sec?1 are reported and discussed.  相似文献   

14.
Cobalt ferrite, CoFe2O4, nanoparticles in the size range 2–15 nm have been prepared using a non-aqueous solvothermal method. The magnetic studies indicate a superparamagnetic behavior, showing an increase in the blocking temperatures (ranging from 215 to more than 340 K) with the particle size, D TEM. Fitting M versus H isotherms to the saturation approach law, the anisotropy constant, K, and the saturation magnetization, M S, are obtained. For all the samples, it is observed that decreasing the temperature gives rise to an increase in both magnetic properties. These increases are enhanced at low temperatures (below ~160 K) and they are related to surface effects (disordered magnetic moments at the surface). The fit of the saturation magnetization to the T 2 law gives larger values of the Bloch constant than expected for the bulk, increasing with decreasing the particle size (larger specific surface area). The saturation magnetization shows a linear dependence with the reciprocal particle size, 1/D TEM, and a thickness of 3.7 to 5.1 Å was obtained for the non-magnetic or disordered layer at the surface using the dead layer theory. The hysteresis loops show a complex behavior at low temperatures (T ≤ 160 K), observing a large hysteresis at magnetic fields H > ~1000 Oe compared to smaller ones (H ≤ ~1000 Oe). From the temperature dependence of the ac magnetic susceptibility, it can be concluded that the nanoparticles are in magnetic interaction with large values of the interaction parameter T 0, as deduced by assuming a Vogel–Fulcher dependence of the superparamagnetic relaxation time. Another evidence of the presence of magnetic interactions is the almost nearly constant value below certain temperatures, lower than the blocking temperature T b, observed in the FC magnetization curves.  相似文献   

15.
The Influence of temperature in the range from 275 to 320 K on ESR spectra and magnetization m of ensembles of spherical gadolinium nanoparticles with the diameter from 89 to 18 nm was studied. The particles with d = 18 nm had a cubic face centered structure and no magnetic transition. At T > TC all particles were paramagnetic, and their g factors were g = 1.98 ± 0.02 irrespective of their size and structure. At T = TC the particles having 28 to 89 nm in size experienced a magnetic and orientation transition; at T < TC their m(H) dependences were described by the Langevin function, and the FMR lines broadened and shifted towards H = 0. FMR lines of the Gd particle ensembles showed a hysteresis behavior during magnetization reversal, which did not correlate with the coercivity of the particles. Dependences of the Gd nanoparticles FMR linewidth ΔH(T) changed proportionally to |TTC|.  相似文献   

16.
The spin kinetics of 3He in an aerogel has been studied above the Fermi temperature. The magnetic relaxation times T 1 and T 2 of adsorbed, gaseous, and liquid 3He in a 95% silica aerogel at a temperature of 1.5 K have been determined as functions of frequency by means of pulse nuclear magnetic resonance. It has been found that the time T 1 is linear in frequency in all three cases, whereas T 2 is independent of frequency. To explain the observed behavior of the longitudinal relaxation rate, a theoretical model of relaxation in the adsorbed layer of 3He taking into account the filamentary structure of the aerogel is proposed.  相似文献   

17.
Using nuclear (proton) magnetic resonance relaxometry (NMRR) was studied oil disperse systems. Dependences of NMR–relaxation parameters—spin–lattice T1i, spin–spin T2i relaxation times, proton populations P1i and P2i, and petrophysical correlations were received for light and heavy oils. Experimental results are interpreted on the base of structure-dynamical ordering of oil molecules with structure unit formation.  相似文献   

18.
Doping of the ZnGeAs2 semiconductor with manganese has produced compositions with spontaneous magnetization and high Curie temperatures of up to 367 K for the composition 3.5 wt% Mn. Their magnetic properties are characteristic of spin glasses at temperatures T < T S and magnetic fields H < 11 kOe. In stronger fields, the spin glass state transforms into a phase with a spontaneous magnetization 4–5 times weaker than that to be expected under ferromagnetic ordering of all Mn ions. This is obviously a singly-connected ferromagnetic phase containing regions with frustrated bonds. The frustrated regions and the spin glass phase have inclusions of noninteracting ferromagnetic clusters, because these regions and the spin glass phase at low temperatures exhibit a strong increase in the magnetization M, with the dependence M(T) being described by the Langevin function. Measurements of the electrical resistivity ρ and the Hall effect have revealed that, for T < 30 K, the resistivity ρ of compositions with 1.5 and 3.5 wt % Mn is higher that at 30 K, which makes superexchange dominant and gives rise to the onset of the spin glass state. The nonuniform distribution of Mn ions in the spin glass phase accounts for the existence of isolated ferromagnetic clusters, their ferromagnetism being generated by carrier-mediated exchange. As the temperature increases still more, the increase in the mobility occurs faster than the decrease in the concentration, thus promoting an enhancement of the carrier-mediated exchange and growth of the ferromagnetic clusters in size, which at T = T S come in contact. This signifies a transition from a multiply-to a singly-connected ferromagnetic phase, which contains microregions with frustrated bonds.  相似文献   

19.
Bulk nanocomposites based on superconducting metals Pb and In embedded into matrices of natural chrysotile asbestos with the nanotube internal diameter d ~ 6 nm have been fabricated and studied. The low-temperature electrical and magnetic properties of the nanocomposites demonstrate the superconducting transition with the transition critical temperature Tc ≈ (7.18 ± 0.02) K for the Pb–asbestos nanocomposite (this temperature is close to Tc bulk = 7.196 K for bulk Pb). The electrical measurements show that In nanofilaments in asbestos have Tc ~ 3.5–3.6 K that is higher than Tc bulk = 3.41 K for bulk In. It is shown that the temperature smearing of the superconducting transition in the temperature dependences of the resistance R(T) ΔT ≈ 0.06 K for the Pb–asbestos and ΔT ≈ 1.8 K for the In–asbestos are adequately described by the fluctuation Aslamazov–Larkin and Langer–Ambegaokar theories. The resistive measurements show that the critical magnetic fields of the nanofilaments extrapolated to T = 0 K are Hc(0) ~ 47 kOe for Pb in asbestos and Hc(0) ~ 1.5 kOe for In in asbestos; these values are significantly higher than the values for the bulk materials (H\(H_{\rm{c}}^{\rm{bulk}}\) = 803 Oe for Pb and \(H_{\rm{c}}^{\rm{bulk}}\) = 285 Oe for In). The results of the electrical measurements for Pb?asbestos and In–asbestos agree with the data for the magnetic-field dependences of the magnetic moment in these nanocomposites.  相似文献   

20.
The magnetic properties of an EuBaCo1.9O5.36 single crystal are studied in the temperature range T = 2–300 K and the magnetic field range H ≤ 90 kOe. This binary layered cobaltite single crystal has vacancies in the cobalt and oxygen sublattices, in contrast to the stoichiometric EuBaCo2O5.5 composition. All cobalt ions in EuBaCo1.9O5.36 are in a trivalent state. The single crystal has an orthorhombic structure with space group Pmmm, and its unit cell parameters are a = 3.883 Å, b = 7.833 Å, and c = 7.551 Å. The field and temperature dependences of the magnetization of the single crystal demonstrate that it is ferrimagnet below TC = 242 K. At T < 300 K, all three spin states of the Co3+ ions are present. The nearest-neighbor interactions give antiferromagnetic (AFM) and ferromagnetic (FM) contributions to the exchange energy. The ratio of the AFM to the FM contributions changes when temperature decreases because of a change in the spin state of the Co3+ ions. The single crystal exhibits signs of mictomagnetism at low temperatures in high magnetic fields. At T = 2 K and H = 90 kOe, the zero-field and nonzero-field magnetizations are strongly different because of a uniaxial magnetic anisotropy, which tends to set magnetization along the magnetic field applied in cooling throughout the crystal volume. As a result, a complex ferrimagnetic structure with a noncollinear direction of Co3+ spins appears. The following phenomena characteristic of mictomagnets are also observed in the EuBaCo1.9O5.36 single crystal: a shift in a magnetization hysteresis loop when temperature decreases, retained hysteretic phenomena and no magnetization saturation in high magnetic fields, and an orientation transition. The mictomagnetic state in EuBaCo1.9O5.36 is shown to be caused by the structural distortions induced by vacancies in the cobalt and oxygen sublattices and by the frustration of AFM and FM exchange interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号