首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group 6 metal bis(benzene) sandwich complexes (M-bz(2): M=Cr, Mo, and W and bz=C(6)H(6)) were produced with laser vaporization molecular beam techniques and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and density functional theory calculations. Each sandwich complex is in a D(6h) eclipsed configuration with (1)A(1g) and (2)A(1g) as the neutral and cationic ground electronic states, respectively. The adiabatic ionization energies for Cr-, Mo-, and W-bz(2) are measured to be 44,081(7), 44,581(10), and 43,634(7) cm(-1), respectively. The metal-benzene stretch and benzene torsion frequencies of the ion are measured to be 264, 277, and 370 cm(-1) and 11, 21, and 45 cm(-1) for Cr-, Mo-, and W-bz(2), respectively. In addition, a C-H out-of-plane bending mode is measured to be 787 cm(-1) for the Cr(+)-bz(2) complex, while a C-C in-plane bending mode is measured to be 614 cm(-1) for the W(+)-bz(2) complex. The unusual trend in the ionization energy and metal-benzene stretch frequency indicates strong relativistic effects on tungsten binding.  相似文献   

2.
The electronic structure and chemical bonding in the Ta 3 (-) cluster are investigated using photoelectron spectroscopy and density functional theory calculations. Photoelectron spectra are obtained for Ta 3 (-) at four photon energies: 532, 355, 266, and 193 nm. While congested spectra are observed at high electron binding energies, several low-lying electronic transitions are well resolved and compared with the theoretical calculations. The electron affinity of Ta 3 is determined to be 1.35 +/- 0.03 eV. Extensive density functional calculations are performed at the B3LYP/Stuttgart +2f1g level to locate the ground-state and low-lying isomers for Ta 3 and Ta 3 (-). The ground-state for the Ta 3 (-) anion is shown to be a quintet ( (5)A 1') with D 3 h symmetry, whereas two nearly isoenergetic states, C 2 v ( (4)A 1) and D 3 h ( (6)A 1'), are found to compete for the ground-state for neutral Ta 3. A detailed molecular orbital analysis is performed to elucidate the chemical boding in Ta 3 (-), which is found to possess multiple d-orbital aromaticity, commensurate with its highly symmetric D 3 h structure.  相似文献   

3.
Cation vibronic spectra are measured for 1,4-benzodioxan (BZD) and van der Waals complexes of BZD with one and two Ar atoms using zero electron kinetic energy and mass analyzed threshold ionization spectroscopy. The spectra of the monomer cation were used to measure the frequencies of the two key low-frequency modes which had previously been extensively studied in the neutral S0 and S1 states. The aliphatic ring twisting mode, nu25, has an energy of 146 cm(-1) in the cation, intermediate between the values found in the S0 and S1 states. The bending, butterfly-like mode nu48 has an energy of 125 cm(-1), which is of higher frequency than either of the neutral states. The S1 spectra of the BZD-Ar1 and BZD-Ar2 complexes are recorded and observed to have modest red shifts from the monomer. The cation spectra of the complexes are also measured using mass analyzed threshold ionization spectroscopy including scans at higher energy which are used to determine the Ar binding energies. The energies for the loss of one Ar atom were determined to be 630 +/- 10 and 650 +/- 10 cm(-1) for BZD-Ar and BZD-Ar2, respectively. The similar cation spectra and similar binding energies indicate that each Ar atom in BZD-Ar2 has a similar binding geometry. Quantum chemical calculations were performed which had fair agreement with the measured binding energies and give some insight into the specific binding geometry.  相似文献   

4.
The gas-phase lithium cation basicities (LCB values, Gibbs free energies of binding) of alpha,omega-diphenylalkanes Ph-(CH(2))(n)-Ph (n=2, 3, or 7) and 1,1-diphenylethane Ph-CH(Me)-Ph were investigated by means of Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry. Their structures, and those of the corresponding Li(+) complexes were optimized at the B3LYP/6-31G(d) level and their relative stabilities calculated at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level. Whereas the most stable conformers of the free diphenylalkanes were found to adopt a completely stretched aliphatic chain connecting the two benzene rings, the most stable Li(+) complexes correspond to conformers in which the alkali metal cation interacts simultaneously with both benzene rings through the folding of the aliphatic chain ("pincer effect"). This chelation brings about a significant enhancement of the Li(+) binding enthalpies (LBE values), which were calculated to be approximately 75 kJ mol(-1) higher than those evaluated for conventional (singly coordinated) pi complexes in which the metal cation interacts with only one of the benzene rings. The increase of the corresponding lithium cation basicities, however, (Gibbs free energies of Li(+) binding, LCB values) was calculated to be smaller by approximately 15 kJ mol(-1) as the pincer effect is entropically disfavored. The good agreement between the calculated LCB values, assuming a statistical distribution of the different conformers present in the gas phase, and the experimental LCB values measured by means of FTICR mass spectrometry are considered indirect evidence of the existence of the pincer effect.  相似文献   

5.
A computational modeling of the protonation of corannulene at B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p) and of the binding of lithium cations to corannulene at B3LYP/6-311G(d,p)//B3LYP/6-31G(d,p) has been performed. A proton attaches preferentially to one carbon atom, forming a sigma-complex. The isomer protonated at the innermost (hub) carbon has the best total energy. Protonation at the outermost (rim) carbon and at the intermediate (bridgehead rim) carbon is less favorable by ca. 2 and 14 kcal mol(-)(1), respectively. Hydrogen-bridged isomers are transition states between the sigma-complexes; the corresponding activation energies vary from 10 to 26 kcal mol(-)(1). With an empirical correction obtained from calculations on benzene, naphthalene, and azulene, the best estimate for the proton affinity of corannulene is 203 kcal mol(-)(1). The lithium cation positions itself preferentially over a ring. There is a small energetic preference for the 6-ring over the 5-ring binding (up to 2 kcal mol(-)(1)) and of the convex face over the concave face (3-5 kcal mol(-)(1)). The Li-bridged complexes are transition states between the pi-face complexes. Movement of the Li(+) cation over either face is facile, and the activation energy does not exceed 6 kcal mol(-)(1) on the convex face and 2.2 kcal mol(-)(1) on the concave face. In contrast, the transition of Li(+) around the corannulene edge involves a high activation barrier (24 kcal mol(-)(1) with respect to the lowest energy pi-face complex). An easier concave/convex transformation and vice versa is the bowl-to-bowl inversion with an activation energy of 7-12 kcal mol(-)(1). The computed binding energy of Li(+) to corannulene is 44 kcal mol(-)(1). Calculations of the (7)Li NMR chemical shifts and nuclear independent chemical shifts (NICS) have been performed to analyze the aromaticity of the corannulene rings and its changes upon protonation.  相似文献   

6.
The photoinduced hydrogen (or deuterium) detachment reaction of thiophenol (C(6)H(5)SH) or thiophenol-d(1) (C(6)H(5)SD) pumped at 243 nm has been investigated using the H (D) ion velocity map imaging technique. Photodissociation products, corresponding to the two distinct and anisotropic rings observed in the H (or D) ion images, are identified as the two lowest electronic states of phenylthiyl radical (C(6)H(5)S). Ab initio calculations show that the singly occupied molecular orbital of the phenylthiyl radical is localized on the sulfur atom and it is oriented either perpendicular or parallel to the molecular plane for the ground (B(1)) and the first excited state (B(2)) species, respectively. The experimental energy separation between these two states is 2600+/-200 cm(-1) in excellent agreement with the authors' theoretical prediction of 2674 cm(-1) at the CASPT2 level. The experimental anisotropy parameter (beta) of -1.0+/-0.05 at the large translational energy of D from the C(6)H(5)SD dissociation indicates that the transition dipole moment associated with this optical transition at 243 nm is perpendicular to the dissociating S-D bond, which in turn suggests an ultrafast D+C(6)H(5)S(B(1)) dissociation channel on a repulsive potential energy surface. The reduced anisotropy parameter of -0.76+/-0.04 observed at the smaller translational energy of D suggests that the D+C(6)H(5)S(B(2)) channel may proceed on adiabatic reaction paths resulting from the coupling of the initially excited state to other low-lying electronic states encountered along the reaction coordinate. Detailed high level ab initio calculations adopting multireference wave functions reveal that the C(6)H(5)S(B(1)) channel may be directly accessed via a (1)(n(pi),sigma(*)) photoexcitation at 243 nm while the key feature of the photodissociation dynamics of the C(6)H(5)S(B(2)) channel is the involvement of the (3)(n(pi),pi(*))-->(3)(n(sigma),sigma(*)) profile as well as the spin-orbit induced avoided crossing between the ground and the (3)(n(pi),sigma(*)) state. The S-D bond dissociation energy of thiophenol-d(1) is accurately estimated to be D(0)=79.6+/-0.3 kcalmol. The S-H bond dissociation energy is also estimated to give D(0)=76.8+/-0.3 kcalmol, which is smaller than previously reported ones by at least 2 kcalmol. The C-H bond of the benzene moiety is found to give rise to the H fragment. Ring opening reactions induced by the pi-pi(*)n(pi)-pi(*) transitions followed by internal conversion may be responsible for the isotropic broad translational energy distribution of fragments.  相似文献   

7.
The geometries and relative energies of the low-lying electronic states of C(10)N(2)(I), cation, and anion are investigated by the DFT/CCSD(T) method. Vibrational frequency calculation is performed to analyze the stability of optimized geometries of these states. The binding energy, ionization energy, electron affinity of C(10)N(2)(I) and the anion photoelectron spectra are estimated at the CCSD(T)/6-31G(d) level. The ground states of neutral C(10)N(2)(I), cation, and anion are the (1)A(1), (4)B(2), and (2)A(2) states, respectively. The structure of C(10)N(2)(I) can be described as resulting from the fusion of 2 five-numbered rings and 1 six-numbered ring. Results demonstrate that the 2 five-numbered rings are more active than the six-numbered ring in C(10)N(2)(I) during electron excitation and the C(1) atom site within each N(11)-C(1)-C(5)-C(10) unit exhibits more inert than other atom sites during electron ionization and electron attachment.  相似文献   

8.
A series of novel calixpyrrole-like macrocycles, calix[n]bis(pyrrol-2-yl)benzene (calix[n]BPBs, n=2-4) 9 a-11 a, have been synthesized by means of the TFA-catalyzed condensation reaction of bis(pyrrol-2-yl)benzene 8 a with acetone. Calix[2]BPB 9 a represents an expanded version of calix[4]pyrrole in which two of the four meso bridges are replaced by benzene rings. By contrast, systems 10 a and 11 a, which bear great considerable to calixbipyrroles 2 and 3, represent higher homologues of the basic calix[n]BPB motif. Solution-phase anion binding studies, carried out by means of (1)H NMR spectroscopic titrations in [D2]dichloromethane and isothermal titration calorimetry (ITC) in 1,2-dichloroethane, reveal that 9 a binds typical small anions with substantially higher affinities than 1, even though the same number of hydrogen bonding donor groups are found in both compounds. The basic building block for 9 a, benzene dipyrrole 8 a, also displays a higher affinity for anions than the building block for 1, dimethyldipyrromethane 16. Structural studies, carried out by single-crystal X-ray diffraction analyses, are consistent with the solution-phase results and reveal that 9 a is able to stabilize complexes with chloride and nitrate in the solid state. Structures of the PF6- and NO3- complexes of 10 a were also solved as were those of the acetone adduct of 9 a and the ethyl acetate adduct of 11 a.  相似文献   

9.
A comparison of the performance of various density functional methods including long‐range corrected and dispersion corrected methods [MPW1PW91, B3LYP, B3PW91, B97‐D, B1B95, MPWB1K, M06‐2X, SVWN5, ωB97XD, long‐range correction (LC)‐ωPBE, and CAM‐B3LYP using 6‐31+G(d,p) basis set] in the study of CH···π, OH···π, and NH···π interactions were done using weak complexes of neutral (A) and cationic (A+) forms of alanine with benzene by taking the Møller–Plesset (MP2)/6‐31+G(d,p) results as the reference. Further, the binding energies of the neutral alanine–benzene complexes were assessed at coupled cluster (CCSD)/6‐31G(d,p) method. Analysis of the molecular geometries and interaction energies at density functional theory (DFT), MP2, CCSD methods and CCSD(T) single point level reveal that MP2 is the best overall performer for noncovalent interactions giving accuracy close to CCSD method. MPWB1K fared better in interaction energy calculations than other DFT methods. In the case of M06‐2X, SVWN5, and the dispersion corrected B97‐D, the interaction energies are significantly overrated for neutral systems compared to other methods. However, for cationic systems, B97‐D yields structures and interaction energies similar to MP2 and MPWB1K methods. Among the long‐range corrected methods, LC‐ωPBE and CAM‐B3LYP methods show close agreement with MP2 values while ωB97XD energies are notably higher than MP2 values. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

10.
Using density functional theory within the generalized gradient approximation, we have theoretically studied the formation of neutral metal-aromatic complexes R1-M and R1-M-R2, where M is either neutral lithium, calcium, or gallium and R1 or R2 is benzene or borazine. We first find that calcium atom is an effective mediator for cooperative formation of a sandwich complex with borazine, while others are not. When benzene and borazine are mixed in the presence of calcium, a 1:2:1 mixture of benzene-calcium-benzene, borazine-calcium-benzene, and borazine-calcium-borazine is expected. An "A"-shaped structure is predicted for homo- and heterocomplexes of borazine with partial B-B and B-C bonds, while two rings are planar in the case of homocomplexes of benzene. Our analysis of the electron density distributions in HOMO-1 to LUMO in terms of orbital symmetry in conjunction with analysis of l,m-projected electronic local density of states shows that this correlates with the charge transfer and the interaction of pi states of the rings mediated by empty d-states of Ca, which is ultimately related to the polarity of the B-N bond. We find that there is a large accumulation of electron density on particular atoms upon complex formation, predicting characteristic behavior in electron-transfer reaction and nucleophilic reaction different from those for pure benzene or borazine molecule. The hetero-sandwich complex is of particular interest due to its asymmetrical distribution of excess electrons.  相似文献   

11.
Monobenzene complexes of yttrium (Y), lanthanum (La), and lutetium (Lu), M(C(6)H(6)) (M = Y, La, and Lu), were prepared in a laser-vaporization supersonic molecular beam source and studied by pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy and ab initio calculations. The calculations included the second-order perturbation, the coupled cluster with single, double, and perturbative triple excitation, and the complete active space self-consistent field methods. Adiabatic ionization energies and metal-benzene stretching frequencies of these complexes were measured for the first time from the ZEKE spectra. Electronic states of the neutral and ion complexes and benzene ring deformation were determined by combining the spectroscopic measurements with the theoretical calculations. The ionization energies of M(C(6)H(6)) are 5.0908 (6), 4.5651 (6), and 5.5106 (6) eV, and the metal-ligand stretching frequencies of [M(C(6)H(6))](+) are 328, 295, and 270 cm(-1) for M = Y, La, and Lu, respectively. The ground states of M(C(6)H(6)) and [M(C(6)H(6))](+) are (2)A(1) and (1)A(1), respectively, and their molecular structures are in C(2v) point group with a bent benzene ring. The deformation of the benzene ring upon metal coordination is caused by the pseudo Jahn-Teller interaction of (1(2)E(2)+1(2)A(1)+2(2)E(2)) e(2) at C(6v) symmetry. In addition, the study shows that spectroscopic behaviors of Y(C(6)H(6)) and La(C(6)H(6)) are similar to each other, but different from that of Lu(C(6)H(6)).  相似文献   

12.
The two asymptotically degenerate potential energy surfaces of argon interacting with the X (2)E(1g) ground state benzene(+) cation were calculated ab initio from the interaction energy of the neutral Ar-benzene complex given by Koch et al. [J. Chem. Phys. 111, 198 (1999)] and the difference of the geometry-dependent ionization energies of the complex and the benzene monomer computed by the outer valence Green's function method. Coinciding minima in the two potential surfaces of the ionic complex occur for Ar on the C(6v) symmetry axis of benzene(+) (the z axis) at z(e)=3.506 A. The binding energy D(e) of 520 cm(-1) is only 34% larger than the value for the neutral Ar-benzene complex. The higher one of the two surfaces is similar in shape to the neutral Ar-benzene potential, the lower potential is much flatter in the (x,y) bend direction. Nonadiabatic (Jahn-Teller) coupling was taken into account by transformation of the two adiabatic potentials to a two-by-two matrix of diabatic potentials. This transformation is based on the assumption that the adiabatic states of the Ar-benzene(+) complex geometrically follow the Ar atom. Ab initio calculations of the nonadiabatic coupling matrix element between the adiabatic states with the two-state-averaged CAS-SCF(5,6) method confirmed the validity of this assumption. The bound vibronic states of both Ar-C(6)H(6) (+) and Ar-C(6)D(6) (+) were computed with this two-state diabatic model in a basis of three-dimensional harmonic oscillator functions for the van der Waals modes. The binding energy D(0)=480 cm(-1) of the perdeuterated complex agrees well with the experimental upper bound of 485 cm(-1). The ground and excited vibronic levels and wave functions were used, with a simple model dipole function, to generate a theoretical far-infrared spectrum. Strong absorption lines were found at 10.1 cm(-1) (bend) and 47.9 cm(-1) (stretch) that agree well with measurements. The unusually low bend frequency is related to the flatness of the lower adiabatic potential in the (x,y) direction. The van der Waals bend mode of e(1) symmetry is quadratically Jahn-Teller active and shows a large splitting, with vibronic levels of A(1), E(2), and A(2) symmetry at 1.3, 10.1, and 50.2 cm(-1). The level at 1.3 cm(-1) leads to a strong absorption line as well, which could not be measured because it is too close to the monomer line. The level at 50.2 cm(-1) gives rise to weaker absorption. Several other weak lines in the frequency range of 10 to 60 cm(-1) were found.  相似文献   

13.
Ni+ (benzene)n (n = 1-6) and Ni+ (benzene)n Ar(1,2) (n = 1,2) are produced by laser vaporization in a pulsed nozzle cluster source. The clusters are mass selected and studied by infrared laser photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer. The excitation laser is an OPO/OPA system that produces tunable IR in the C-H stretching region of benzene. Photodissociation of Ni+ (benzene)n complexes occurs by the elimination of intact neutral benzene molecules, while Ni+ (benzene)n Ar(1,2) complexes lose Ar. This process is enhanced on resonances, and the vibrational spectrum is obtained by monitoring the fragment yield versus the infrared wavelength. Vibrational bands in the 2700-3300 cm(-1) region are characteristic of the benzene molecular moiety with systematic shifts caused by the metal bonding. A dramatic change in the IR spectrum is seen at n = 3 and is attributed to the presence of external benzene molecules acting as solvent molecules in the cluster. The results of previous theoretical calculations are employed to investigate the structures, energetics, and vibrational frequencies of these complexes. The mono-benzene complex is found to have a C2v structure, with benzene distorted by the metal pi-bonding. The di-benzene complex is found to have a D2h structure, with both benzenes distorted. The comparison between experiment and theory provides intriguing new insight into the bonding in these prototypical pi-bonded organometallic complexes.  相似文献   

14.
Gas-phase alkaline earth halide anions, MgX3(-) and CaX3(-) (X = Cl, Br), were produced using electrospray and investigated using photoelectron spectroscopy at 157 nm. Extremely high electron binding energies were observed for all species and their first vertical detachment energies were measured as 6.60 +/- 0.04 eV for MgCl3(-), 6.00 +/- 0.04 eV for MgBr3(-), 6.62 +/- 0.04 eV for CaCl3(-), and 6.10 +/- 0.04 eV for CaBr3(-). The high electron binding energies indicate these are very stable anions and they belong to a class of anions, called superhalogens. Theoretical calculations at several levels of theory were carried out on these species, as well as the analogous BeX3(-). Vertical detachment energy spectra were predicted to compare with the experimental observations, and good agreement was obtained for all species. The first adiabatic detachment energies were found to be substantially lower (by about 1 eV) than the corresponding vertical detachment energies for all the MX3(-) species, indicating extremely large geometry changes between MX3(-) and MX3. We found that all the MX3(-) anions possess D3h ((1)A1') structures and are extremely stable against dissociation into MX2 and X-. The corresponding neutral species MX3, however, were found to be only weakly bound with respect to dissociation toward MX2 + X. The global minimum structures of all the MX3 neutrals were found to be C2v ((2)B2), which can be described as (X2(-))(MX+) charge-transfer complexes, whereas the MX2...X (C2v, (2)B1) van der Waals complexes were shown to be low-lying isomers.  相似文献   

15.
The vibronic (vibrational-electronic) interactions in the pi-anion radicals of the metalloporphyrins (M=Cr, Mn, Fe, Co, Ni, Cu, and Zn), which show delocalized D4h structures in the neutral states, are discussed using B3LYP density-functional-theory calculations. The B1g and B2g modes of vibration can remove the degenerate 2Eg state of the pi-anion radicals in the D4h symmetric structures to lead to rectangular and diamond D2h distortions, respectively. Calculated vibronic coupling constants demonstrate that the B1g modes of vibration better couple with the degenerate electronic state, leading to the rectangular D2h distortion. In particular, the B1g modes of nu10 and nu11, which have dominant contributions from Calpha-Cm and Cbeta-Cbeta stretching, give large vibronic coupling constants in the pi-anion radicals. The vibronic coupling constant can be viewed as the Jahn-Teller distortion force, and therefore these C-C stretching B1g modes will play a central role in the Jahn-Teller effect of the pi-anion radicals of the metalloporphyrins.  相似文献   

16.
Planar (D6h) benzene has one (1181i cm-1, b2g) and three (1844i cm-1, b2g; 462i cm-1, e2u) imaginary vibrational frequencies at the MP2/6-311++G(d,p) and MP2/6-311++G levels of theory, respectively! The spurious frequencies correspond to D3d chair (b2g) and C2v boat (e2u) out-of-plane distortions. Numerous, similar examples where planar benzene is not a minimum are documented at the MP2, MP3, and CISD levels with popular Pople-type basis sets, while the RHF, B3LYP, and BLYP methods exhibit no such problems. We show that, in the sp and spd atomic-orbital limits of MP2 theory, benzene is nonplanar. The observed failure of electron correlation methods with unbalanced basis sets to predict planar minima is not unique to benzene but is also found for other pi-delocalized molecules, including pyridine, naphthalene, anthracene, the cyclopentadienyl and indenyl anions, and the tropylium cation. Detailed mathematical analysis reveals that an insidious, geometry-dependent, two-electron basis set incompleteness error (BSIE) is responsible for the problem and that balanced, correlation-consistent constructions of basis sets are generally required to ensure reliable predictions for arenes with correlated wave functions.  相似文献   

17.
We have produced and investigated an unique boron oxide cluster, B4O2(-), using photoelectron spectroscopy and ab initio calculations. Relatively simple and highly vibrationally resolved PES spectra were obtained at two photon energies (355 and 193 nm). The electron affinity of neutral B4O2 was measured to be 3.160 +/- 0.015 eV. Two excited states were observed for B4O2 at excitation energies of 0.48 and 0.83 eV above the ground state. Three vibrational modes were resolved in the 355 nm spectrum for the ground state of B4O2 with frequencies of 350 +/- 40, 1530 +/- 30, and 2040 +/- 30 cm(-1). Ab initio calculations showed that neutral B4O2 (D(infinity h), 3sigma(g)-) and anionic B4O2(-) (D(infinity h), 2pi(u)) both possess highly stable linear structures (O[triple bond]B-B=B-B[triple bond]O), which can be viewed as a B2 dimer bonded to two terminal boronyl groups. The lowest nonlinear structures are at least 1.5 eV higher in energy. The calculated electron detachment energies from the linear B4O2- and the vibrational frequencies agree well with the experimental results. The three observed vibrational modes are due to the B-B, B=B, and B[triple bond]O symmetric stretching vibrations, respectively, in the linear B2(BO)2. Chemical bonding analyses revealed that the HOMO of B2(BO)2, which is half-filled, is a bonding pi orbital in the central B2 unit. Thus, adding two electrons to B2(BO)2 leads to a B[triple bond]B triple bond in [O[triple bond]B-B[triple bond]B-B[triple bond]O]2-. Possibilities for stabilizing B2(BO)2(2-) in the form of B2(BO)2Li2 are considered computationally and compared with other valent isoelectronic, triple bonded species, B2H2Li2, B2H2(2-), and C2H2. The high stability of B2(BO)2(2-) suggests that it may exist as a viable building block in the condensed phase.  相似文献   

18.
The infrared and Raman spectrum of 1-bromo-3-fluoropropane is reported in the gas, liquid, amorphous solid and annealed polycrystalline states. Only one of the five possible conformers is stable in the crystal, designated the C conformer. The disordered phases show the presence of several other conformers of higher energy, due entirely to conformers designated B and D. Ab initio calculations were performed as rhf/4-31g*/MIDI-4*, rhf/6-31g* and mp2/6-31g* (both frozen core and full electron correlation) for all five conformers. The scaled harmonic force field obtained using the mp2 = full/6-31g* level of the theory is reported for the most stable conformer together with an assignment of fundamentals and potential energy distributions for local symmetry coordinates. Selected computational results are reported for all conformers together with scaled and unscaled wavenumbers and infrared and Raman intensities. The temperature dependent Raman spectrum is reported from room temperature to -100 degrees C. Only three of the five possible conformers can be identified in this spectrum, and there is no evidence of the other two. The energy differences between conformers in the liquid phase were found experimentally to be 132+/-27, 232+/-46 and 106+/-30 cm(-1), respectively between the D and C, B and C and D and B conformers. These differences are substantially less than the differences calculated ab initio at the highest level of the theory used, suggesting that energy differences were decreased by large dipole-dipole interactions present in the liquid but not in the gas.  相似文献   

19.
Electronic structure calculations of the excited states of the benzene dimer using equation-of-motion coupled-cluster method are reported. The calculations reveal large density of electronic states, including multiple valence, Rydberg, and mixed Rydberg-valence states. The calculations of the oscillator strengths for the transitions between the excimer state (i.e., the lowest excited state of the dimer, 1(1)B(1g)) and other excited states allowed us to identify the target state responsible for the excimer absorption as the E(1u) state of a mixed Rydberg-valence character at 3.04 eV above the excimer (1(1)B(1g)). Although at D(6h) the 1(1)B(1g) → E(1u) transition is symmetry-forbidden, small geometric displacements (to D(2h)) that have a negligible effect on the excitation energy split this degenerate state into the dark (4B(3u)) and bright (4B(2u)) components (oscillator strength of 0.3 au). The excitation energy for this transition depends strongly on the dimer structure, which explains the broad character of the experimentally observed excimer absorption spectrum.  相似文献   

20.
Titanocene complexes with chelating N-heterocyclic ligand bridges react with ferrocenium salts as selective oxidants to afford air-stable cationic complexes and allow the preparation of exceptional mixed valence hexaazatrinaphthylene complexes [(Cp2Ti)3(mu3-HATNMe6)]n+ (1n+) (n=1, 2, 3, 4). Cyclic voltammograms (CV) and differential pulse voltammograms (DPV) show that nine oxidation states of 1 are generated without decomposition. Comproportionation constants Kc have been calculated in order to determine the extent of electronic communication between the titanium centers. The Kc values of the mixed valence states are indicative of uncoupled (14+), moderately coupled (15+), and strongly coupled (1-, 1+, and 12+) systems. Small but significant structural changes occurring upon oxidation of neutral 1 are observed by X-ray structural analysis on 1+-14+. Anion-pi interactions between the electron-deficient central ring of the HATNMe6 moiety and PF6- and BF4- counterions, respectively, are found for 12+, 13+, and 14+. The short cation-anion contacts cause interesting molecular allignments in terms of molecular architecture. For 12+ the assembly of an one-dimensional (1D) polymer is observed. Electrochemical investigations on the mononuclear cationic titanocene complexes [(Cp2Ti)(L)]+ (L=2,2'-biquinoline (2+), 4,4'-dimethyl-2,2'-biquinoline (3+), and 5,8'-dimethyl-2,3'-biquinoxaline (4+)) showed similar oxidation and reduction characteristics among each other. Conversion to monoanionic, neutral, and dicationic states is enabled. As found for the trinuclear compounds 1n+, the molecular structures of 2+-4+ reveal significant differences compared to their neutral parents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号